بررسی الگوهای مکانی و زمانی تعلیف غیرمجاز دام در پارک ملی گلستان | ||
| زیست قوم شناسی و حفاظت تنوع زیستی | ||
| دوره 2، شماره 1 - شماره پیاپی 5، فروردین 1404، صفحه 49-65 اصل مقاله (1.29 M) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22091/ethc.2024.11558.1038 | ||
| نویسندگان | ||
| میثم مددی1؛ حمیدرضا رضایی* 1؛ علیرضا محمدی2؛ باقر نظامی3؛ مریم شهبازی4 | ||
| 1گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
| 2گروه علوم و مهندسی محیط زیست، دانشکده منابع طبیعی، دانشگاه جیرفت، جیرفت، ایران | ||
| 3گروه تنوع زیستی و ایمنی زیستی، پژوهشکده محیط زیست و توسعه پایدار، سازمان حفاظت محیط زیست، تهران، ایران. | ||
| 4گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران. | ||
| چکیده | ||
| هدف: طی دهههای اخیر، افزایش تعداد دام اهلی در جهان منجر به ورود غیرقانونی دامها به مناطق حفاظتشده گردیده است. تعلیف دام بهعنوان یک دغدغه جهانی، یکی از فعالیتهای غالب بشری است که در مناطق حفاظتشده همچون پارک ملی گلستان انجام میشود و اثرات مستقیم و غیرمستقیم زیادی را در پی دارد. این مطالعه به شناسایی و تهیه نقشه پهنهبندی نقاط داغ وقوع تخلفات تعلیف غیرمجاز دام در پارک ملی گلستان پرداخته است. مواد و روشها: طی بازه زمانی 1385 تا 1402 پروندههای تخلفات پارک ملی گلستان مورد بررسی قرار گرفت و نقاط تخلفات ثبت و بر اساس روش تحلیل فضایی در نرم افزار ArcGIS، کانونهای داغ تعلیف غیرمجاز دام مورد شناسایی قرار گرفت. نتایج: بر اساس دادههای فراوانی وقوع تخلفات، چهار منطقه اصلی شامل حوزه دشت شاد، کویلر، قوشهچشمه و تنگراه جزء مناطق حساس و داغ تخلفات شناسایی شدند. همچنین نتایج نشان داد که پراکنش وقوع تخلفات به صورت خوشهای (متمرکز) و منطبق بر الگوی ثابت (در طول زمان) میباشد. نتیجهگیری: یافتههای به دست آمده بینشهای ارزشمندی را برای برنامهریزی و تدوین استراتژیهای پیشگیری از تخلف در پارک ملی گلستان ارائه میدهد و بر این اساس میتوان مداخلات و پایشهای متمرکز را به سمت کانونهای شناسایی شده با فعالیت تخلف بالا هدایت کرد. | ||
| کلیدواژهها | ||
| تعلیف دام؛ پارکملی گلستان؛ پهنهبندی تخلفات؛ نقاط داغ | ||
| عنوان مقاله [English] | ||
| Investigating spatial and temporal patterns of illegal livestock grazing in Golestan National Park | ||
| نویسندگان [English] | ||
| Meysam Madadi1؛ Hamidreza REZAEI1؛ Alireza Mohammadi2؛ Bagher Nezami3؛ Maryam Shahbazi4 | ||
| 1Department of Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. | ||
| 2Department of Environmental Sciences and Engineering, Faculty of Natural Resources, University of Jiroft, Jiroft, Iran. | ||
| 3Research Group of Biodiversity and Biosafety, Research Center for Environment and Sustainable Development (RCESD), Department of the Environment, Tehran, Iran. | ||
| 4Department of Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. | ||
| چکیده [English] | ||
| Objective: The increase in the number of domestic livestock worldwide has led to the illegal entry of livestock into protected areas. Illegal livestock grazing is one of the dominant human activities in protected areas and has many direct and indirect effects. This study has identified and prepared a zoning map of the hot spots of illegal livestock violations using ArcGIS software. Methods: The examination of violation cases in Golestan National Park was done during 2015-2024 and violation points were recorded and based on different tools of spatial statistics, analysis of spatial clustering and areas of violations was done. Results: Based on the data on the frequency of violations, 4 main areas including Dashteshad, Kuyler, Ghoshe-Ceshmeh and Tangrah have been identified as sensitive and hot areas for Illegal livestock grazing, and it was found that the spread of violations is in the north-south direction, with a concentration in the west of Golestan National Park. Also, the analysis of Z and P values at the 99% confidence level showed that the distribution of phenomena is clustered. Conclusion: The obtained findings provide valuable insights for planning and formulating violation prevention strategies in Golestan National Park, and based on this, focused activities can be directed towards the Hotspots identified with high violation activity. | ||
| کلیدواژهها [English] | ||
| Golestan National Park, Hotspots, Livestock grazing, Violation Zoning | ||
| مراجع | ||
|
اخوان، رضا؛ کرمی خرم آبادی، منا؛ و سوسنی، جواد (1390). کاربرد دو روش کریجینگ و IDW در پهنه بندی تراکم و تاج پوشش جنگلهای شاخه زاد بلوط (مطالعه موردی: منطقه کاکارضای خرم آباد لرستان). مجله جنگل ایران. 3 (4)، 305-316. آخانی، حسین (1383). فلور مصور پارک ملی گلستان. جلد اول. تهران: مؤسسه انتشارات و چاپ دانشگاه تهران. جوی زاده، سعید؛ حدادی، ساره؛ و درانی نژاد، محمدصادق (1397). آمار فضایی (تحلیل داده های مکانی). نشر آکادمیک. حسینی طائفه، فرهاد؛ نظامی بلوچی، باقر؛ و ایزدیان، منا (1402). مدیریت تعارض و تهدیدهای گور ایرانی Equus hemionus onager در زیستگاههای طبیعی و مراکز تکثیر و معرفی مجدد در ایران. محیط زیست و توسعه فرابخشی، 8 (79)، 47-26. زندی دره غریبی، رحمان؛ مرگن مقدم، علی؛ و فسنقری، مهسا (1400). تحلیلهای مکانی با. Arc GIS انتشارات ماهواره. علوی، کاملیا؛ کیانژاد، صدیقه؛ و صباغ، سیدهعالمه (1398). تهیه نقشه آلودگی هوا با استفاده از روش درونیابیکریجینگ در GIS، مورد مطالعه: کلان شهر تهران. پژوهشهای بوم شناسی شهری. 10 (20)، 184-171. علوی، سید جلیل؛ زاهدی امیری، قوامالدین؛ نوری، زهرا؛ و مروی مهاجر، محمدرضا (1392). کاربرد تابع K ریپلی در آشکارسازی الگوی پراکنش مکانی گونه ملج در جنگل آموزشی و پژوهشی خیرود نوشهر. پژوهشهای علوم و فناوری چوب و جنگل، 20 (4)، 39-21. مهدوی، علی؛ طباطبائی یزدی، فاطمه؛ محمدی، علیرضا؛ و خانی، علی (1400). شناسایی مناطق داغ تلفات جادهای گوشت خواران و اولویت بندی آنها در استان خراسان رضوی. محیط زیست جانوری. 13 (4)، 34-27. وارسته مرادی، حسین (1384). تعیین نسبت جنسی و گروههای سنی گوزن مرال Cervus elaphus و شوکا Capreolus capreolus در پارک ملی گلستان. علوم کشاورزی و منابع طبیعی. 12 (4)، 161-154. وارسته مرادی، حسین؛ و مددی، میثم (1400). شناسایی محرکهای اقتصادی - اجتماعی شکار غیرمجاز حیات وحش در پارک ملی گلستان. طرح پژوهشی. دانشگاه علوم کشاورزی و منابع طبیعی گرگان. Akhani, H. (2005). The illustrated flora of Golestan national park. University of Tehran Press. Vol 1. (in Persian) Akhavan, R., Karami Khoram Abadi, M., & Sosani, J. (2012). Application of Kriging and IDW methods in mapping of crown cover and density of coppice oak forests (case study: Kakareza region, Khorramabad). Iranian Journal of Forest, 3(4), 305-316. (in Persian) Alavi, C., Kianejad, S., & Sabbagh, A. (2020). Preparation of air pollution mapping by interpolating Kriging Method in GIS, case study: Tehran Metropolis. Biannual Journal of Urban Ecology Researches, 10(20), 171-184. (in Persian) Alavi, S. J., Zahedi Amiri, GH., Noori, Z., & Marvi Mohajer, M. R. (2014). Application of Ripley’s K-Function in detecting spatial pattern of Wych Elm Species in Khayroud Forests, north of Iran. Journal of Wood and Forest Science and Technology, 20(4), 21-39. (in Persian) Butt, B. (2014). The political ecology of ‘incursions’: Livestock, protected areas and socio-ecological dynamics in the mara region of Kenya. Africa, 84(4), 614-637. Denninger Snyder, K., Mneney, P. B., & Wittemyer, G. (2019). Predicting the risk of illegal activity and evaluating law enforcement interventions in the western Serengeti. Conservation Science and Practice, 1(9), 1-13. Dixon, M. (2002). Ripley’s K function. In Encyclopedia of Environmetrics (pp. 2041-2046). John Wiley & Sons. Ejemeyovwi, D. O. (2015). Crime mapping using time series analysis in Asaba, Delta State, Nigeria: A remote sensing and GIS approach. European Journal of Basic and Applied Sciences, 2(2), 52-71. Eshtiaghi, A., Naderi, S., Mohammadi, A., & Wan, H. Y. (2024). Identifying wild boar (Sus scrofa) crop damage hotspots to mitigate human-wild boar conflicts in northern Iran. Global Ecology and Conservation, 54, e03065. Gandiwa, E., Heitkönig, I. M., Lokhorst, A. M., Prins, H. H., & Leeuwis, C. (2013). Illegal hunting and law enforcement during a period of economic decline in Zimbabwe: A case study of northern Gonarezhou National Park and adjacent areas. Journal for Nature Conservation, 21(3), 133-142. Gedamu, W. T., Plank-Wiedenbeck, U., & Wodajo, B. T. (2024). A spatial autocorrelation analysis of road traffic crash by severity using Moran’s I spatial statistics: A comparative study of Addis Ababa and Berlin cities. Accident Analysis & Prevention, 200, 107535. Gerber, M. S. (2014). Predicting crime using Twitter and kernel density estimation. Decision Support Systems, 61, 115-125. Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban Economics, 37(4), 491-496. Glasner, P., & Leitner, M. (2016). Evaluating the impact the weekday has on near-repeat victimization: A spatio-temporal analysis of street robberies in the city of Vienna, Austria. International Journal of Geo-Information, 6(1), 3. Gupta, R., Rajitha, K., Basu, S., & Mittal, S. K. (2012, February). Application of GIS in crime analysis: A gateway to safe city. In India Geospatial Forum (pp. 1-6). He, Z., Wang, Z., Gu, Y., & An, X. (2023). Measuring the influence of multiscale geographic space on the heterogeneity of crime distribution. International Journal of Geo-Information, 12(10), 437. Hibert, F., Calenge, C., Fritz, H., Maillard, D., Bouché, P., Ipavec, A., Convers, A., Ombredane, D., & De Visscher, M. N. (2010). Spatial avoidance of invading pastoral cattle by wild ungulates: insights from using point process statistics. Biodiversity and Conservation, 19(7), 2003-2024. Hosein, S., Al-Tahir, R., & Ramlal, B. (2013, November). Spatiotemporal analysis of dengue hemorrhagic fever and dengue shock syndrome incidence within Trinidad, West Indies. In Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health (pp. 8-17). Hosseini Tayefeh, F., Nezami Baloochi, B., Izadian, M. (2023). Management of Conflicts and Threats of the Endangered Persian Wild Ass (Equus Hemionus Onager) in Natural Habitats and Breeding and Re-Introduction Centers in Iran. Environment & Interdisciplinary Development, 8(79), 26-47. (in Persian) Hussnain, M. (2019). Application of geospatial information system for crime analysis: A case study of crimes in district Bhakkar, Punjab, Pakistan for 2017. Pakistan Geographical Review, 74(2), 104-126. Ikanda, D. K. (2009). Dimensions of a human-lion conflict: the ecology of human predation and persecution of African Lions Panthera Leo in Tanzania. (Doctoral dissertation, Norwegian University of Science and Technology, Trondheim, Norway). Jannat, R., & Al-Amin, M. (2023). Spatial statistics for legal process. Journal of Spatial Science, 69(2), 327-347. Javizadeh, S., Haddadi, S., & Duraninejad, M. P. (2017). Spatial statistics (spatial data analysis). Academic publication. (in Persian) Kan, Z., Kwan, P., & Tang, L. (2022). Ripley’s K-function for network-constrained flow data. Geographical Analysis, 54(4), 769-788. Kolahi, M., Sakai, T., Moriya, K., & Makhdoum, M. F. (2012). Challenges to the future development of Iran's protected areas system. Environmental Management, 50(4), 750-765. Kuiper, T., Loveridge, A. J., Parker, D., Johnson, P. J., Hunt, J. E., Stapelkamp, B., Sibanda, L., & Macdonald, D. W. (2015). Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. Biological Conservation, 191, 546–554. Kumar, G. R. P., & Somashekar, R. K. (2012). GIS based crime mapping and analysis: A case study of Mudugiri Town Police Station jurisdiction, Tumkur District, Karnataka, India. GIS Crime Mapping and Analysis, 1(1), 1-8. Lema, M. A., & Majule, A. E. (2009). Impacts of climate change, variability and adaptation strategies on agriculture in semi arid areas of Tanzania: The case of Manyoni District in Singida Region, Tanzania. African Journal of Environmental Science and Technology, 3(8), 206-218. Lin, J. (2023). Comparison of Moran’s I and Geary’s C in multivariate spatial pattern analysis. Geographical Analysis, 55(4), 685-702. Mackenzie, C. A., & Hartter, J. (2013). Demand and proximity: Drivers of illegal forest resource extraction. Oryx, 47(2), 288-297. Mackenzie, C. A., Chapman, C. A., & Sengupta, R. (2011). Spatial patterns of illegal resource extraction in Kibale National Park, Uganda. Environmental Conservation, 39(1), 38-50. Madadi, M., Nezami, B., Kaboli, M., Rezaei, H. R., & Mohammadi, A. R. (2023). Human–brown bear conflicts in the North of Iran: Implication for conflict management. Ursus, 34(2), 1-10. Marceló-Díaz, C., Lesmes, M. C., Santamaría, E., Salamanca, J. A., Fuya, P., Cadena, H., Muñoz- Matungwa, L. E., Kegamb, J. J., Kisingo, A.W., & Masuruli, M. B. (2022). Proximate causes and risks of illegal grazing in Serengeti National Park: Perceptions of livestock keepers. African Geographical Review. 1-18. https://doi.org/10.1101/2022.12.21.521527 Ming, L. Z. (2024). Facilitating elders: A study on spatial distribution equity in Mianyang City. Hollex Journal of Environmental Sciences, 12(1), 1-9. Mohler, G. (2014). Marked point process hot spot maps for homicide and gun crime prediction in Chicago. International Journal of Forecasting, 30, 491-497. Musika, N. V., Wakibara, J. V., Ndakidemi, P. A, & Treydte, A. C. (2021). Spatio-temporal patterns of increasing illegal livestock grazing over three decades at Moyowosi Kigosi game reserve, Tanzania. Land, 10(12),1325. Mutheneni, S. R., Mopuri, R., Naish, S., Gunti, D., & Upadhyayula, S. M. (2018). Spatial distribution and cluster analysis of dengue using self-organizing maps in Andhra Pradesh, India, 2011–2013. Parasites & Vectors, 3(1), 52-61. Nelson, F. (2012). Natural conservationists? Evaluating the impact of pastoralist land use practices on Tanzania's wildlife economy. Pastoralism: Research, Policy and Practice, 2(1), 15. Ngwira, A., Manda, S., Karimuribo, E., Kimera, S., & Stanley, C. (2024). Spatial analysis of livestock disease data in sub-Saharan Africa: A scoping review. Scientific African, 23, e02113. Nkrumah, J. D., Okine, E. K., Mathison, G. W., Schmid, K., Li, C., Basarab, J. A., Price, M.A, Wang, Z., & Moore, S. S. (2006). Relationships of feedlot feed efficiency, performance, and feeding behavior with metabolic rate, methane production, and energy partitioning in beef cattle. Journal of Animal Science, 84(1), 145-153. Pimpler, E. (2017). Spatial analytics with ArcGIS. Packt Publishing Ltd. Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I. H., Levi, T., Lindsey, P. A., Macdonald, D. W., Malhi, Y., Painter, L. E, Sandom, C. J., Terborgh, J., & Van Valkenburgh, B. (2015). Collapse of the world's largest herbivores. Science Advances. 1. e1400103. 10.1126/sciadv.1400103. Schiffers, K., Schurr, F., Tielbörger, K., Urbach, C., Moloney, K., & Jeltsch, F. (2008). Dealing with virtual aggregation - A new index for analysing heterogeneous point patterns. Ecography, 31(5), 545-555. Self, S., Overby, A., Zgodic, A., White, D., McLain, A., & Dyckman, C. (2023). A hypothesis test for detecting distance-specific clustering and dispersion in areal data. Spatial Statistics, 55, 100757. Seno, S. K. O., & Tome, S. (2013) Socioeconomic and Ecological Viability of Pastoralism in Loitokitok District, Southern Kenya. Nomadic Peoples, 17, 66-86. Soofi, M., Ghoddousi, A., Zeppenfeld, T., Shokri, S., Soufi, M., Jafari, A., Ahmadpour, M., Qashqaei, A. T., Egli, L., Ghadirian, T., Chahartaghi, N. R., Zehzad, B., Kiabi, B. H., Khorozyan, I., Balkenhol, N., & Waltert, M. (2018). Livestock grazing in protected areas and its effects on large mammals in the Hyrcanian Forest, Iran. Biological Conservation, 217, 377-382. Varasteh Moradi, H. (2005). Determining sex ratio and age groups of Meral deer Cervus elaphus and Capreolus capreolus in Golestan National Park. Journal of Agricultural Sciences and Natural Resources,12(4), 161-154. (in Persian) Varasteh Moradi, H., & Madadi, M. (2021). Recognition of socioeconomic drivers of Illegal Wildlife poaching in Golestan National Park. Research Report. Gorgan University of Agricultural Sciences and Natural Resources. (in Persian) Vidanapathirana, N., Wang, Y., McLain, A. C., & Self, S. (2022). Cluster Detection Capabilities of the Average Nearest Neighbor Ratio and Ripley's K Function on Areal Data: an Empirical Assessment. https://doi.org/10.48550/arXiv.2204.10882. Wu, Y., & Li, Y. (2023). “Hot street” of crime detection in London borough and lockdown impacts. Geo-Spatial Information Science, 26(4), 716-732. https://doi.org/10.1080/10095020.2022.2088302 Yang, L., Fei, S., Jia, H., Qi, J., Wang, L., & Hu, X. (2023). Study on the relationship between the spatial distribution of shared bicycle travel demand and urban built environment. Sustainability, 15(18), 13576. Yuan, Y., Qiang, Y., Bin Asad, K., & Chow, T. E. (2020). Point pattern analysis. In The Geographic Information Science & Technology Body of Knowledge, (1st Quarter 2020 Edition). Zainelabdeen, Y. M., Yan, R., Xin, X., Yan, Y., Ahmed, A. I., Hou, L., & Zhang, Y. (2020). The Impact of Grazing on the Grass Composition in Temperate Grassland. Agronomy, 10(9), 1230. Zandi Dareh Gharibi, R., Margan Moghadam, A., & Fasanqari, M. (2021). Spatial analysis with Arc GIS. Satellite publications. (in Persian) Zarco-González, M. M., Monroy-Vilchis, O., & Alaníz, J. (2013). Spatial model of livestock predation by jaguar and puma in Mexico: Conservation planning. Biological Conservation, 159, 80-87. | ||
|
آمار تعداد مشاهده مقاله: 504 تعداد دریافت فایل اصل مقاله: 280 |
||
