بررسی تاثیر سیمان و الیاف حاوی آربوسِلِ چرب بر ویژگیهای مکانیکی و رطوبتی مخلوطهای آسفالتی سرد امولسیونی | ||
پژوهش های زیرساخت های عمرانی | ||
مقاله 13، دوره 9، شماره 2 - شماره پیاپی 17، دی 1402، صفحه 111-123 اصل مقاله (2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22091/cer.2023.9372.1477 | ||
نویسندگان | ||
علیرضا معتمدنیا1؛ حمید شیرمحمدی* 2؛ مرتضی اسدامرجی3 | ||
1دانشجوی دکتری عمران، پژوهشگاه حمل و نقل طراحان پارسه، تهران، ایران. | ||
2دانشیار، گروه عمران، دانشکده فنی، دانشگاه ارومیه، ایران. | ||
3استادیار، دانشکده عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران. | ||
چکیده | ||
آسفالتهای سرد امولسیونی، دارای مزایا و معایبی میباشند. مزایای این نوع مخلوطها، به دمای کم تولید، ملاحظات زیستمحیطی و قابلیت حمل آن برای مسافتهای زیاد مربوط میشود. یکی از دلایل اصلی عملکرد ضعیف این نوع آسفالت، ضعف رطوبتی است. نفوذ آب از عملیات شکست قیر امولسیونی ممانعت به عمل میآورد و در این راستا، مقاومت مخلوط در برابر رطوبت کاهش مییابد. در تحقیق حاضر، پس از تعیین درصد قیر بهینه به روش مارشال اصلاح شده، به میزان 1 تا 3 درصد وزنی، مخلوط آسفالتی سیمان و 0.3 تا 0.5 درصد وزنی، الیاف حاوی آربوسلهای چرب به مخلوط اضافه گردید. نمونههای حاصل، تحت آزمایشهای میزان استحکام مارشال، روانی، شاخص مارشال، لاتمن اصلاح شده و نیکلسون قرار گرفت. برمبنای نتایج بهدست آمده از آزمایشها، استحکام مارشال 47.88 درصد، شاخص مارشال تا میزان قابلتوجه 139 درصد، چسبندگی 41 درصد، نسبت مقاومت کششی غیرمستقیم 21 درصد، افزایش و روانی36.47 درصد کاهش مییابد. این تحقیق، استفاده همزمان سیمان، 3 درصد و الیاف حاوی آربوسل چرب، 0.3 درصد در مخلوطهای آسفالت سرد را توصیه میکند. | ||
کلیدواژهها | ||
آسفالت سرد امولسیون؛ لاتمن اصلاح شده؛ استحکام مارشال؛ آربوسل چرب؛ نیکلسون | ||
عنوان مقاله [English] | ||
Investigating the Effect of Cement and Fibers Containing Fatty Arbocell on the Mechanical and Moisture Properties of Cold Emulsion Asphalt Mixtures | ||
نویسندگان [English] | ||
Alireza Motamadnia1؛ Hamid Shirmohammadi2؛ Morteza Asadamregi3 | ||
1PhD Candidate, Tarrahan Parseh Transportation Research Institute, Tehran, Iran. | ||
2Associate Professor, Department of civil Engineering, Faculty of Engineering, University of Urmia, Urmia, Iran. | ||
3Assistant Professor, Faculty of Civil, Water and Environmental Engineering, University of Shahid Beheshti, Tehran, Iran. | ||
چکیده [English] | ||
Cold emulsion asphalts have advantages and disadvantages. The advantages of this type of mixture are related to the low temperature of production, environmental considerations, and its portability to long distances. One of the main reasons for the poor performance of this type of asphalt is its moisture content. The water penetration hinders the fracture of emulsion bitumen, and after that, the mixture's resistance to moisture is reduced. The present research used the modified Marshall method to determine the optimal bitumen percentage. For this reason, one to three percent by weight of the asphalt-cement mixture and 0.3 to 0.5 percent by weight of fiber mixture containing fatty arbocell were added. The resulting samples were subjected to the Marshall strength, Marshall index modified Lottman and Nicholson tests. Based on the results, the Marshall strength was 47.88%, the Marshall index was 139%, adhesion was 41%, the ratio of indirect tensile strength was 21%, and the fluidity was 36.47%. According to the data obtained from this research, it is suggested that 3% cement and 0.3% fatty arbocell fibers should apply in cold asphalt mixtures. | ||
کلیدواژهها [English] | ||
Cold Emulsified Asphalt Modified Lottman, Marshall Stability, Fatty Arbocel, Nicholson | ||
مراجع | ||
[1] Khavandi, A.R., Ayen, V., & Ejlali, B. (2014). Investigation on Preparation and Performance of Clay-Stabilized Asphalt Emulsions in Iran. Quarterly Journal of Transportation Engineering, 5(3), 303-316. dor: 20.1001.1.20086598.1393.5.3.1.7 [In Persian] [2] Martin, J. S., Cooley Jr, L. A., & Hainin, M. R. (2003). Production and construction issues for moisture sensitivity of hot-mix asphalt pavements. In Transportation Research Board National Seminar. San Diego, California, 209-222. [3] Oruc, S., Celik, F., & Akpinar, M. V. (2007). Effect of Cement on Emulsified Asphalt Mixtures. Journal of materials engineering and performance, 16, 578-583. doi: 10.1007/s11665-007-9095-2 [4] Xiong, F., Zarei, M., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Kh, T. I. (2023). Effect of nano-reduced graphene oxide (NRGO) on long-term fracture behavior of Warm Mix Asphalt (WMA). Construction and Building Materials, 392, 131934. doi: 10.1016/j.conbuildmat.2023.131934 [5] Van Gorkum, F., Lubbers, H. E., Priston, R. A. G., & Roos, H. (1993). Exposure to pac in bituminous road construction. The European Association of Bitumen Producers, Sweden, 430-436. [6] Khweir, K., Windmill, A., & Fordyce, D. (1995). The Potential of Stone Filled Emulsions Asphalt. The European Association of Bitumen Producers, Sweden, 681-685. [7] Dibaj, S., & Kavousi, A. (2012). An optimized mix design method for emulsified bituminous mixtures. Quarterly Journal of Transportation Engineering, 4(1), 23-34. dor: 20.1001.1.20086598.1391.4.1.3.4 [In Persian] [8] Bayat, R., & Taherkhani, H. (2016). Application of Polypropylene Fiber on the Rutting and Tensile Strength of Binder Layer of Flexible Pavement based on Complex Procedure. Petroleum Research, 26(95), 143-154. doi: 10.22078/pr.2016.621 [In Persian] [9] Ameri, M., Mohammadi, M. H., Motevalizadeh, S. M., & Mousavi, A. (2019). Experimental study to investigate the performance of cold in-place recycling asphalt mixes. In Proceedings of the Institution of Civil Engineers-Transport, 172(6), 360-370. doi: 10.1680/jtran.17.00062 [10] Zarei, M., Salehikalam, A., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Negahban, M. (2022). Pure mode I fracture resistance of hot mix asphalt (HMA) containing nano-SiO2 under freeze–thaw damage (FTD). Construction and Building Materials, 351, 128757. doi: 10.1016/j.conbuildmat.2022. 128757 [11] Zarei, M., Kordani, A. A., Naseri, A., Khordehbinan, M. W., Khajehzadeh, M., & Zahedi. M. (2022). Evaluation of fracture behaviour of modified warm mix asphalt containing vertical and angular cracks under freeze-thaw damage. International Journal of Pavement Engineering, 1-7. doi: 10.1080/10298436. 2022.2072500 [12] Schmidt, R. J., Santucci, L. E., & Coyne, L. D. (1973). Performance characteristics of cement modified asphalt emulsion mixes. Proc of the AAPT, 42, 300-319. [13] Akbari Baghal, A. E., Maleki, A., & Vafaei, R. (2021). On the Pull-Out Behavior of Hooked-End Shape Memory Alloys Fibers Embedded in Ultra-High Performance Concrete. International Journal of Engineering and Technology Innovation, 11(4), 265-77. doi:10.46604/ijeti.2021.7060 [14] Xiao, J., Jiang, W., Ye, W., Shan, J., & Wang, Z. (2019). Effect of cement and emulsified asphalt contents on the performance of cement-emulsified asphalt mixture. Construction and Building Materials, 220, 577-586. doi: 10.1016/j.conbuildmat.2019.06.051 [15] Li, R., Leng, Z., Wang, Y., & Zou, F. (2020). Characterization and correlation analysis of mechanical properties and electrical resistance of asphalt emulsion cold-mix asphalt. Construction and Building Materials, 263, 119974. doi: 10.1016/j.conbuildmat.2020.119974 [16] Tjaronge, M. W., Irmawaty, R., & Hustim, M. (2020). Effect of buton granular asphalt gradation and cement as filler on performance of cold mix asphalt using limestone aggregate. Journal of Engineering Science and Technology, 15(1), 419-433. doi: 10.1088/1755-1315/419/1/012028 [17] Dardak, H. (1993). Performance of different mixes of sand emulsion in Indonesia. 1st Congress on Emulsion, Paris, 4-12. [18] Guo, M., Tan, Y., & Zhou, S. (2014). Multiscale test research on interfacial adhesion property of cold mix asphalt. Construction and Building Materials, 68, 769-776. doi:10.1016/j.conbuildmat.2014.06.031 [19] Makarchian, M., Karimi, A., & Moghadas Nejad, F. (2016). Evaluation of the Effects of Fiber and Aggregate Type on Mechanical Characteristics of Stone Mastic Asphalt (SMA) and its Comparison Hot Mix Asphalt (HMA). Journal of Transportation Research, 12(4), 375-386. [In Persian] [20] Dong, Q., Yuan, J., Chen, X., & Ma, X. (2018). Reduction of moisture susceptibility of cold asphalt mixture with Portland cement and bentonite Nano-clay additives. Journal of Cleaner Production, 176, 320-328, doi:10.1016/j.jclepro.2017.12.163 [21] Wang, Y., Leng, Z., Li, X., & Hu, C. (2018). Cold recycling of reclaimed asphalt pavement towards improved engineering performance. Journal of Cleaner Production, 171, 1031-1038. doi: 10.1016/j.jclepro.2017.10.132 [22] Sun, Z., Li, Y., Zhang, J., & He, S. (2019). Preparation and performance evaluation of cold mix asphaltic liquid. Journal of Nanoscience and Nanotechnology, 19(1), 245-250. doi:10.1166/jnn.2019.16464 [23] Zarei, M., Taghizadeh, M. R., Moayedi, S. S., Naseri, A., Al-Bahrani, M., & Khordehbinan, M. W. (2022). Evaluation of fracture behavior of Warm mix asphalt (WMA) modified with hospital waste pyrolysis carbon black (HWPCB) under freeze–thaw damage (FTD) at low and intermediate temperatures. Construction and Building Materials, 356, 129184. doi: 10.1016/j.conbuildmat.2022. 129184 [24] Golchin, B., Hamzah, M. O., & Hasan, M. R. M. (2017). Optimization in producing warm mix asphalt with polymer modified binder and surfactant-wax additive. Construction and Building Materials, 141, 578-588. doi: 10.1016/j.conbuildmat.2017.02.123 [25] Tabasi, E., Zarei, M., Mobasheri, Z., Naseri, A., Ghafourian, H., & Khordehbinan, M. W. (2023). Pre-and post-cracking behavior of asphalt mixtures under modes I and III at low and intermediate temperatures. Theoretical and Applied Fracture Mechanics, 124, 103826. doi: 10.1016/j.tafmec.2023.103826 [26] Saedi, S., & ORUÇ, Ş. (2020). The effects of nano bentonite and fatty arbocel on improving the behavior of warm mixture asphalt against moisture damage and rutting. Civil Engineering Journal-Tehran, 6(5), 877-888. doi: 10.28991/cej-2020-03091514 [27] ASTM C127-1. (2004). Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. American Society for Testing and Materials. [28] ASTM C128-15. (2004). Standard test method for density, relative density (specific gravity), and absorption of fine aggregate. American Society for Testing and Materials. [29] ASTM C131, M-14. (2003). Standard test method for resistance to degradation of small - size coarse aggregate by abrasion and impact in the Los Angeles machine. American Society for Testing and Materials. [30] ASTM D4791. (2005). Standard test method for flat particles elongated particles, or flat and elongated particles in coarse aggregate. American Society for Testing and Materials. [31] Soufian Cement Laboratory. (2020). Portland Cement Type II Testing Result Reports, https://soufiancement.com/wp-content/uploads/2021/01/SCCCementAnalysis23Feb.2020TII.pdf [32] ASTM D244-09. (2009). Standard test methods and practices for emulsified asphalts. American Society for Testing and Materials. [33] Sengul, C. E. (2010). Effects of SBS and Fiber Type Additives on the Performance of SMA Compared with Lime. PhD Thesis, Karadeniz Technical University, Trabzon, Turkey. [34] ASTM D3625. (1991). Boiling test of Bituminous mixtures. American Society for Testing and Materials. [35] Akbulut, H., Gürer, C., Çetin, S., & Doğan, H. (2014). The effects of different dusty aggregate on bituminous hot mixtures. Science and Engineering of Composite Materials, 21(1), 69-78. doi: 10.1515/secm-2013-0011 [36] ASTM D2710-09. (2013). Standard test method for bromine index of petroleum hydrocarbons by electrometric titration. American Society for Testing and Materials. [37] ASTM D1559. (1983). Resistance to plastic flow of bituminous mixtures using Marshall Apparatus. American Society for Testing Materials. | ||
آمار تعداد مشاهده مقاله: 231 تعداد دریافت فایل اصل مقاله: 199 |