Locating Routing Problem (LRP) of distribution of priority support items to ground forces in war conditions | ||
| Engineering Management and Soft Computing | ||
| دوره 10، شماره 1 - شماره پیاپی 18، آبان 2024، صفحه 262-292 اصل مقاله (1.2 M) | ||
| نوع مقاله: Original Article | ||
| شناسه دیجیتال (DOI): 10.22091/jemsc.2024.11320.1206 | ||
| نویسندگان | ||
| Milad Abolghasemian1؛ Hamid Bigdeli* 2؛ Nader Shamami3 | ||
| 1Ph.D in industrial engineering, Department of Science and Technology Studies, AJA Command and Staff University, Tehran, Iran. Email: m.abolghasemian.bt@gmail.com | ||
| 2Assist. Prof. Department of Science and Technology Studies, AJA Command and Staff University, Tehran, Iran. Email: hamidbigdeli92@gmail.com | ||
| 3Assist. Prof. Department of Science and Technology Studies, AJA Command and Staff University, Tehran, Iran. Email: nader.shamami@gmail.com | ||
| چکیده | ||
| In this research, a mathematical modeling approach is presented to determine efficient locations for deploying support forces using Data Envelopment Analysis (DEA). Additionally, a mixed-integer linear programming model is proposed for routing prioritized support items. The proposed model allows for the adjustment of manageable inputs to improve outputs according to the principle of managerial accessibility, while also maintaining the current levels of unmanageable inputs if they cannot be reduced based on the principle of natural accessibility. Subsequently, routing for the distribution of these prioritized support items is provided using a mixed-integer linear programming model. The proposed model has been used to evaluate 25 potential locations prepared to provide ground support services to assist friendly forces in contested areas, with the aim of ending the conflict in favor of friendly forces. Sixteen viable support locations have been identified. Finally, routing for the distribution of support items to these 16 locations has been presented. | ||
| کلیدواژهها | ||
| Efficiency؛ Routing؛ Optimization؛ Support Items؛ Positioning | ||
| عنوان مقاله [English] | ||
| مسأله مسیریابی-مکان یابی توزیع اقلام پشتیبانی اولویت دار به نیروهای زمینی در شرایط جنگ | ||
| نویسندگان [English] | ||
| میلاد ابوالقاسمیان1؛ حمید بیگدلی2؛ نادر شمامی3 | ||
| 1دکترای تخصصی مهندسی صنایع، گروه مطالعات علم و فناوری، دانشگاه فرماندهی و ستاد آجا، تهران، ایران. رایانامه: m.abolghasemian.bt@gmail.com | ||
| 2استادیار، گروه مطالعات علم و فناوری، دانشگاه فرماندهی و ستاد آجا، تهران، ایران. رایانامه: hamidbigdeli92@gmail.com | ||
| 3استادیار، گروه مطالعات علم و فناوری، دانشگاه فرماندهی و ستاد آجا، تهران، ایران. رایانامه: nader.shamami@gmail.com | ||
| چکیده [English] | ||
| در این تحقیق، یک مدلسازی ریاضی برای تعیین مکانهای کارا برای اعزام نیروهای پشتیبانی با استفاده از تحلیل پوششی دادهها ارائهشده است. علاوه بر این، یک مدل ریاضی مختلط عدد صحیح برای مسیریابی اقلام پشتیبانی اولویت بندی شده ارائه شده است. مدل پیشنهادشده این امکان را دارد که اولاً ورودیهای مدیریت پذیر را در راستای بهبود خروجیها بر طبق اصل دسترسیپذیری مدیریتی تغییر دهد و همچنین اگر نتوان ورودیهای غیر مدیریت پذیر را بر اساس اصل دسترسیپذیری طبیعی کاهش داد، حداقل در سطح موجود آنها را نگه میدارد. سپس، با استفاده از اولویت بندی اقلام پشتیبانی نسبت به مسیریابی برای توزیع این اقلام پشتیبانی با استفاده از یک مدل ریاضی مختلط عدد صحیح ارائه شده است. مدل موردنظر برای ارزیابی 25 مکان بالقوه که برای ارائه خدمات پشتیبانی زمینی آمادگی دارند تا به نیروهای خودی در محل مورد مناقشه کمک نمایند تا آتش جنگ به نفع نیروهای خودی به پایان برسد، استفادهشده است. 16 مکان مستعد پشتیبانی شناسایی شده اند. سرانجام، مسیریابی توزیع اقلام پشتیبانی به این 16 مکان ارائه شده است. | ||
| کلیدواژهها [English] | ||
| کارایی, مسیریابی, بهینه سازی, اقلام پشتیبانی, موضع یابی | ||
| مراجع | ||
|
Abolghasemian, M., Bigdeli, H., & Shamami, N. (2024). Modeling the positioning of support forces in future battles using data envelopment analysis and the principles of natural and managerial accessibility. Defensive Future Studies, 9(32), 65-98. https://doi.org/10.22034/dfsr.2024.2007554.1720 Arana-Jiménez, M., Sánchez-Gil, M. C., Younesi, A., & Lozano, S. (2021). Integer interval DEA: An axiomatic derivation of the technology and an additive, slacks-based model. Fuzzy sets and systems, 422, 83-105. https://doi.org/10.1016/j.fss.2020.12.011 Asadi, F., Kordrostami, S., Amirteimoori, A., & Bazrafshan, M. (2023). Inverse data envelopment analysis without convexity: double frontiers. Decisions in Economics and Finance, 46(1), 335-354. https://doi.org/10.1007/s10203-022-00377-8 Bigdeli, H., & Mousazadeh, M. (2023). Analytical Hierarchy Process in modeling and solving matrix games in neutrosophic environment and its application in military problems. Military Science and Tactics, 19(64), 5-33. https://doi.org/10.22034/qjmst.2023.544038.1627 Cao, J. X., Wang, X., & Gao, J. (2021). A two-echelon location-routing problem for biomass logistics systems. Biosystems engineering, 202, 106-118. https://doi.org/10.1016/j.biosystemseng.2020.12.007 Cheng, C., Zhu, R., Costa, A. M., Thompson, R. G., & Huang, X. (2021). Multi-period two-echelon location routing problem for disaster waste clean-up. Transportmetrica A: Transport Science, 1-31. https://doi.org/10.1080/23249935.2021.1916644 Du, J., Wang, X., Wu, X., Zhou, F., & Zhou, L. (2022). Multi-objective optimization for two-echelon joint delivery location routing problem considering carbon emission under online shopping. Transportation Letters, 1-19. https://doi.org/10.1080/19427867.2022.2112857 Fakhr Mousavi, S. M., Amirteimoori, A., Kordrostami, S., & Vaez-Ghasemi, M. (2023). Non-radial two-stage network DEA model to estimate returns to scale. Journal of Modelling in Management, 18(1), 36-60. https://doi.org/10.1108/JM2-09-2020-0228 Fallahtafti, A., Ardjmand, E., Young Ii, W. A., & Weckman, G. R. (2021). A multi-objective two-echelon location-routing problem for cash logistics: A metaheuristic approach. Applied Soft Computing, 111, 107685. https://doi.org/10.1016/j.asoc.2021.107685 Gandra, V. M. S., Çalık, H., Wauters, T., Toffolo, T. A., Carvalho, M. A. M., & Berghe, G. V. (2021). The impact of loading restrictions on the two-echelon location routing problem. Computers & Industrial Engineering, 160, 107609. https://doi.org/10.1016/j.cie.2021.107609 Hasanpour Jesri, Z. S., Eshghi, K., Rafiee, M., & Van Woensel, T. (2022). The Multi-Depot Traveling Purchaser Problem with Shared Resources. Sustainability, 14(16), 10190. https://doi.org/10.3390/su141610190 He, D., Ceder, A. A., Zhang, W., Guan, W., & Qi, G. (2023). Optimization of a rural bus service integrated with e-commerce deliveries guided by a new sustainable policy in China. Transportation Research Part E: Logistics and Transportation Review, 172, 103069. https://doi.org/10.1016/j.tre.2023.103069 Heidari, A., Imani, D. M., Khalilzadeh, M., & Sarbazvatan, M. (2022). Green two-echelon closed and open location-routing problem: application of NSGA-II and MOGWO metaheuristic approaches. Environment, Development and Sustainability, 1-37. https://doi.org/10.1007/s10668-022-02429-w Huang, N., Li, J., Zhu, W., & Qin, H. (2021). The multi-trip vehicle routing problem with time windows and unloading queue at depot. Transportation Research Part E: Logistics and Transportation Review, 152, 102370. https://doi.org/10.1016/j.tre.2021.102370 Jiao, L., Peng, Z., Xi, L., Guo, M., Ding, S., & Wei, Y. (2022). A multi-stage heuristic algorithm based on task grouping for vehicle routing problem with energy constraint in disasters. Expert Systems with Applications, 118740. https://doi.org/10.1016/j.eswa.2022.118740 Kordrostami, S., Amirteimoori, A., & Noveiri, M. J. S. (2019). Inputs and outputs classification in integer-valued data envelopment analysis. Measurement, 139, 317-325. https://doi.org/10.1016/j.measurement.2019.02.087 Mohamed, I. B., Klibi, W., Sadykov, R., Şen, H., & Vanderbeck, F. (2022). The two-echelon stochastic multi-period capacitated location-routing problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2022.07.022 Nedjati, A., Izbirak, G., & Arkat, J. (2017). Bi-objective covering tour location routing problem with replenishment at intermediate depots: Formulation and meta-heuristics. Computers & Industrial Engineering, 110, 191-206. https://doi.org/10.1016/j.cie.2017.06.004 Neira, D. A., Aguayo, M. M., De la Fuente, R., & Klapp, M. A. (2020). New compact integer programming formulations for the multi-trip vehicle routing problem with time windows. Computers & Industrial Engineering, 144, 106399. https://doi.org/10.1016/j.cie.2020.106399 Nozari, H., Tavakkoli-Moghaddam, R., & Gharemani-Nahr, J. (2022). A neutrosophic fuzzy programming method to solve a multi-depot vehicle routing model under uncertainty during the covid-19 pandemic. International Journal of Engineering, 35(2), 360-371. https://doi.org/10.5829/ije.2022.35.02b.12 Pirabán-Ramírez, A., Guerrero-Rueda, W. J., & Labadie, N. (2022). The multi-trip vehicle routing problem with increasing profits for the blood transportation: An iterated local search metaheuristic. Computers & Industrial Engineering, 170, 108294. https://doi.org/10.1016/j.cie.2022.108294 Pourghader Chobar, A., Bigdeli, H., & Shamami, N. (2024). A Mathematical Model of Hub Location for War Equipment under Uncertainty Using Meta-Heuristic Algorithms. Journal of Industrial Engineering and Management Studies, 11(1), 62-83. https://doi.org/10.22116/jiems.2024.449057.1554 Pourmohammadreza, N., & Jokar, M. R. A. (2023). A Novel Two-Phase Approach for Optimization of the Last-Mile Delivery Problem with Service Options. Sustainability, 15(10), 8098. https://doi.org/10.3390/su15108098 Rezaei Kallaj, M., Abolghasemian, M., Moradi Pirbalouti, S., Sabk Ara, M., & Pourghader Chobar, A. (2021). Vehicle routing problem in relief supply under a crisis condition considering blood types. Mathematical Problems in Engineering, 2021. https://doi.org/10.1155/2021/7217182 Shamami, N., Mehdizadeh, E., Yazdani, M., & Etebari, F. (2022). Proposing a Stackelberg mathematical model for weapon-target assignment considering both air and ground attacks. Military Science and Tactics, 18(59), 245-270. https://doi.org/10.22034/qjmst.2022.543952.1628 Wang, Y., Sun, Y., Guan, X., Fan, J., Xu, M., & Wang, H. (2021). Two-echelon multi-period location routing problem with shared transportation resource. Knowledge-Based Systems, 226, 107168. https://doi.org/10.1016/j.knosys.2021.107168 Wang, Y., Zhe, J., Wang, X., Sun, Y., & Wang, H. (2022). Collaborative Multidepot Vehicle Routing Problem with Dynamic Customer Demands and Time Windows. Sustainability, 14(11), 6709. https://doi.org/10.3390/su14116709 Xue, G., Wang, Y., Guan, X., & Wang, Z. (2022). A combined GA-TS algorithm for two-echelon dynamic vehicle routing with proactive satellite stations. Computers & Industrial Engineering, 164, 107899. https://doi.org/10.1016/j.cie.2021.107899 Yu, X., Zhou, Y., & Liu, X. F. (2020). The two-echelon multi-objective location routing problem inspired by realistic waste collection applications: The composable model and a metaheuristic algorithm. Applied Soft Computing, 94, 106477. https://doi.org/10.1016/j.asoc.2020.106477 | ||
|
آمار تعداد مشاهده مقاله: 494 تعداد دریافت فایل اصل مقاله: 376 |
||
