استفاده از سناریوهای اقلیمی متفاوت جهت پیشبینی اثرات تغییر اقلیم بر پراکنش ماهی شیربت (Arabibarbus grypus, Heckel, 1843) | ||
زیست قوم شناسی و حفاظت تنوع زیستی | ||
دوره 1، شماره 4، دی 1403، صفحه 37-48 اصل مقاله (946.16 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22091/ethc.2024.11056.1032 | ||
نویسندگان | ||
هادی خوش ناموند1؛ فراهم احمدزاده* 2؛ اصغر عبدلی* 3 | ||
1گروه تنوع زیستی و مدیریت اکوسیستمها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران. | ||
2گروه تنوع زیستی و مدیریت اکوسیستمها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران. ایران. | ||
3گروه تنوع زیستی و مدیریت اکوسیستمها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران. | ||
چکیده | ||
هدف: تغییر اقلیم بهعنوان یکی از مهمترین تهدیدات پیش رو، دارای اثرات قابلتوجهی روی تنوع زیستی و اکوسیستمهای طبیعی است. در مطالعه حاضر، با استفاده از مدلسازی توزیع گونهای (SDM)، اثرات تغییر اقلیم بر پراکنش ماهی شیربت (Arabibarbus grypus, Heckel, 1843) مورد بررسی قرار گرفت. مواد و روشها: در این مطالعه از یک مدل تلفیقی توسط بسته Biomod2 با شش الگوریتم مختلف برای زمان حال و همچنین تحت دو سری زمانی 2070 و2090 با دو مدل خوشبینانه (SSP 126) و بدبینانه (SSP 585) برای زمان آینده انجام گرفت. همچنین برای ساخت مدل، از هشت متغیر اقلیمی، توپوگرافی و انسانی استفاده شد. نتایج: عملکرد پیشبینی مدل بر اساس سه پارامتر AUC، TSS و KAPPA از محدوده خیلی خوب تا عالی 77/0≤ بود. همچنین مهمترین پارامترهای تأثیرگذار بر پراکنش گونه شیربت پارامترهای کمینه دمای سردترین ماه سال (Bio 6)، مجموع بارندگی سالانه (Bio 12) و ردپای انسانی بودند. همچنین دامنه پراکنش گونه مورد مطالعه در هر دو سناریوی خوشبینانه و بدبینانه برای سالهای 2070 و 2090 میلادی، با کاهش قابلتوجهی مواجه خواهد شد. نتیجهگیری: با توجه به مطالعه حاضر و مطالعات قبلی، اثرات تغییر اقلیم صورت گرفته روی ماهیان، بهوضوح نشان داده است که گونهها نسبت به تغییرات اقلیمی دارای پاسخهای متفاوتی از جانب خود هستند که این پاسخها، ارائه راهکارها و استراتژیهای مدیریتی متناسب و خاص را برای هر گونه میطلبد. | ||
کلیدواژهها | ||
تغییرات اقلیمی؛ تنوع زیستی؛ مدل تلفیقی؛ حفاظت | ||
عنوان مقاله [English] | ||
Using different climate scenarios to predict the effects of climate change on the distribution of shabout fish (Arabibarbus grypus, Heckel, 1843) | ||
نویسندگان [English] | ||
Hadi Khoshnamvand1؛ Faraham Ahmadzadeh2؛ Asghar Abdoli3 | ||
1Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran. | ||
2Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran. | ||
3Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran. | ||
چکیده [English] | ||
Objective: Climate change, as one of the most important threats ahead, has significant effects on biodiversity and natural ecosystems. In the present study, using species distribution modeling (SDM) the effects of climate change on the spread and distribution of the Shabout fish species (Arabibarbus grypus, Heckel, 1843) was investigated. Methods: in terms of SDM, an ensemble model by the Biomod2 package with six different algorithms for the present time and also under two-time series of 2070 and 2090 with two models Optimistic (SSP 126) and pessimistic (SSP 585) were used for a future time. In addition, eight climatic, topographic, and human variables were used to build the model. Results: The results showed that the prediction performance of the model based on three parameters AUC, TSS, and KAPPA ranged from very good to excellent ≤0.77. The most important parameters affecting the distribution of shirbat species were the parameters of the minimum temperature of the coldest month of the year (Bio 6), total annual rainfall (Bio 12), and human footprints. Also, the range of distribution of the studied species in both optimistic and pessimistic scenarios for the years 2070 and 2090 will face a significant decrease. Conclusion: The effects of climate change on the shabout species have clearly shown that the species have different responses to climate change, and these responses provide appropriate and specific management strategies for each species. | ||
کلیدواژهها [English] | ||
Biodiversity, Climate change, Conservation, Ensemble modeling | ||
مراجع | ||
Abdoli, A. (2016). Field guide of fishes of inland waters of Iran (First). Iran-shenasi. Ajirlu, M. S., Moazzen, M., & Hajialioghli, R. (2016). Tectonic evolution of the Zagros Orogen in the realm of the Neotethys between the Central Iran and Arabian Plates: An ophiolite perspective. Central European Geology, 59(1–4), 1–27. https://doi.org/10.1556/24.59.2016.001 Ahmadzadeh, F., Shahrokhi, G., Saberi-Pirooz, R., Oladi, M., Taati, M., Poyarkov, N. A., & Rödder, D. (2020). Alborz Heritage: geographic distribution and genetic differentiation of the Iranian Paradactylodon (Amphibia: Hynobiidae). Amphibia-Reptilia, 41(4), 519-534. Aksu, S. (2021). Current and future potential habitat suitability prediction of an endemic freshwater fish species Seminemacheilus lendlii (Hankó, 1925) using Maximum Entropy Modelling (MaxEnt) under climate change scenarios: Implications for conservation. Journal of Limnology and Freshwater Fisheries Research, 7(1), Article 1. https://doi.org/10.17216/limnofish.758649 Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43(6), 1223-1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x Amiri, N., Vaissi, S., Aghamir, F., Saberi‐Pirooz, R., Rödder, D., Ebrahimi, E., & Ahmadzadeh, F. (2021). Tracking climate change in the spatial distribution pattern and the phylogeographic structure of Hyrcanian wood frog, Rana pseudodalmatina (Anura: Ranidae). Journal of Zoological Systematics and Evolutionary Research, 59(7), 1604-1619. Jouladeh-Roudbar, A., Ghanavi, H. R., & Doadrio, I. (2020). Ichthyofauna from Iranian freshwater: Annotated checklist, diagnosis, taxonomy, distribution and conservation assessment. Zoological Studies, 59, e21. https://doi.org/10.6620/ZS.2020.59-21 Armstrong, J. B., Schindler, D. E., Ruff, C. P., Brooks, G. T., Bentley, K. E., & Torgersen, C. E. (2013). Diel horizontal migration in streams: Juvenile fish exploit spatial heterogeneity in thermal and trophic resources. Ecology, 94(9), 2066–2075. https://doi.org/10.1890/12-1200.1 Ashcroft, M. B. (2010). Identifying refugia from climate change. Journal of Biogeography, 37(8), 1407–1413. https://doi.org/10.1111/j.1365-2699.2010.02300.x Ashrafzadeh, M. R., Khosravi, R., Mohammadi, A., Naghipour, A. A., Khoshnamvand, H., Haidarian, M., & Penteriani, V. (2022). Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. Science of The Total Environment, 837, 155753. https://doi.org/10.1016/j.scitotenv.2022.155753 Ashrafzadeh, M. R., Naghipour, A. A., Khoshnamvand, H., Haidarian, M., & Esmaeili, S. (2020). Distribution modeling of foraging habitats for Egyptian Vulture (Neophron percnopterus) in Kermanshah Province, Iran. Iranian Journal of Applied Ecology, 8(4), 35-51. Ashrafzadeh, M. R., Naghipour, A. A., Mohammadi, A., Haidarian, M., & Khoshnamvand, H. (2023). Habitat suitability modeling of Persian leopard (Panthera pardus) in Lorestan province, Iran. Experimental Animal Biology, 11(4), 95–108. https://doi.org/DOI: 10.30473/EAB.2023.67107.1903 Bagheri, M., Azimi, M., Khoshnamvand, H., Abdoli, A., & Ahmadzadeh, F. (2023). The threat of a non-native oligochaete species in Iran’s freshwater: Assessment of the diversity and origin of Eiseniella tetraedra (Savigny, 1826) and its response to climate change. Biology Open, bio.060180. https://doi.org/10.1242/bio.060180 Birnie‐Gauvin, K., Lynch, A. J., Franklin, P. A., Reid, A. J., Landsman, S. J., Tickner, D., Dalton, J., Aarestrup, K., & Cooke, S. J. (2023). The RACE for freshwater biodiversity: Essential actions to create the social context for meaningful conservation. Conservation Science and Practice, 5(4), e12911. https://doi.org/10.1111/csp2.12911 Bongaerts, P., & Smith, T. B. (2019). Beyond the “Deep Reef Refuge” Hypothesis: A Conceptual Framework to Characterize Persistence at Depth. In Mesophotic Coral Ecosystems (pp. 881–895). Springer International Publishing. https://doi.org/10.1007/978-3-319-92735-0_45 Borhani, F., Ehsani, A. H., McGuirk, S. L., Shafiepour Motlagh, M., Mousavi, S. M., Rashidi, Y., & Mirmazloumi, S. M. (2024). Examining and predicting the influence of climatic and terrestrial factors on the seasonal distribution of ozone column depth over Tehran province using satellite observations. Acta Geophysica, 72(2), 1191–1226. https://doi.org/10.1007/s11600-023-01179-1 Brodie, J., Johnson, H., Mitchell, M., Zager, P., Proffitt, K., Hebblewhite, M., Kauffman, M., Johnson, B., Bissonette, J., Bishop, C., Gude, J., Herbert, J., Hersey, K., Hurley, M., Lukacs, P. M., McCorquodale, S., McIntire, E., Nowak, J., Sawyer, H., … White, P. J. (2013). Relative influence of human harvest, carnivores, and weather on adult female elk survival across western N orth A merica. Journal of Applied Ecology, 50(2), 295-305. https://doi.org/10.1111/1365-2664.12044 Buisson, L., Thuiller, W., Lek, S., Lim, P., & Grenouillet, G. (2008). Climate change hastens the turnover of stream fish assemblages. Global Change Biology, 14(10), 2232-2248. https://doi.org/10.1111/j.1365-2486.2008.01657.x Cowan, M. A., Callan, M. N., Watson, M. J., Watson, D. M., Doherty, T. S., Michael, D. R., Dunlop, J. A., Turner, J. M., Moore, H. A., Watchorn, D. J., & Nimmo, D. G. (2021). Artificial refuges for wildlife conservation: What is the state of the science? Biological Reviews, 96(6), 2735-2754. https://doi.org/10.1111/brv.12776 Cox, C. B., & Moore, P. D. (2005). Biogeography: An ecological and evolutionary approach (7th ed). Blackwell Pub. Darab, M., Mostafavi, H., Rahimi, R., Teimori, A., & Farshchi, P. (2020). Modeling the Habitat Suitability of Botak-e-Fars, Cyprinion Tenuiradius Heckel, 1849 and Determining the Impact of Climate Change on its Distribution in Fars Province. Journal of Applied Ichthyological Research, 8(5), 51-60. Freyhof, J. (2018). Arabibarbus grypus (amended version of 2014 assessment). The IUCN Red List of Threatened Species 2018. IUCN. https://www.iucnredlist.org/species/19171241/134236379 Ghaedi, Z., Badri, S., Saberi-Pirooz, R., Vaissi, S., Javidkar, M., & Ahmadzadeh, F. (2021). The Zagros Mountains acting as a natural barrier to gene flow in the Middle East: more evidence from the evolutionary history of spiny-tailed lizards (Uromasticinae: Saara). Zoological Journal of the Linnean Society, 192(4), 1123-1136. Ghane-Ameleh, S., Khosravi, M., Saberi-Pirooz, R., Ebrahimi, E., Aghbolaghi, M. A., & Ahmadzadeh, F. (2021). Mid-Pleistocene transition as a trigger for diversification in the Irano-Anatolian region: Evidence revealed by phylogeography and distribution pattern of the eastern three-lined lizard. Global Ecology and Conservation, 31, e01839. Hahlbeck, N., Tinniswood, W. R., Sloat, M. R., Ortega, J. D., Wyatt, M. A., Hereford, M. E., Ramirez, B. S., Crook, D. A., Anlauf‐Dunn, K. J., & Armstrong, J. B. (2022). Contribution of warm habitat to cold‐water fisheries. Conservation Biology, 36(3), e13857. https://doi.org/10.1111/cobi.13857 Hannah, D. M., & Garner, G. (2015). River water temperature in the United Kingdom: Changes over the 20th century and possible changes over the 21st century. Progress in Physical Geography: Earth and Environment, 39(1), 68-92. https://doi.org/10.1177/0309133314550669 Harter, D. E. V., Irl, S. D. H., Seo, B., Steinbauer, M. J., Gillespie, R., Triantis, K. A., Fernández-Palacios, J.-M., & Beierkuhnlein, C. (2015). Impacts of global climate change on the floras of oceanic islands – Projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics, 17(2), 160-183. https://doi.org/10.1016/j.ppees.2015.01.003 Hawlitschek, O., Porch, N., Hendrich, L., & Balke, M. (2011). Ecological Niche Modelling and nDNA Sequencing Support a New, Morphologically Cryptic Beetle Species Unveiled by DNA Barcoding. PLoS ONE, 6(2), e16662. https://doi.org/10.1371/journal.pone.0016662 Isaak, D. J., & Rieman, B. E. (2013). Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Global Change Biology, 19(3), 742-751. https://doi.org/10.1111/gcb.12073 Kafash, A., Ashrafi, S., Yousefi, M., Rastegar-Pouyani, E., Rajabizadeh, M., Ahmadzadeh, F., Grünig, M., & Pellissier, L. (2020). Reptile species richness associated to ecological and historical variables in Iran. Scientific Reports, 10(1), 18167. https://doi.org/10.1038/s41598-020-74867-3 Keppel, G., & Wardell‐Johnson, G. W. (2012). Refugia: Keys to climate change management. Global Change Biology, 18(8), 2389-2391. https://doi.org/10.1111/j.1365-2486.2012.02729.x Khoshnamvand, H., Vaissi, S., Azimi, M., & Ahmadzadeh, F. (2024). Phylogenetic climatic niche evolution and diversification of the Neurergus species (Salamandridae) in the Irano-Anatolian biodiversity hotspot. Ecology and Evolution, 14, e70105. https://doi.org/10.1002/ece3.70105 Makki, T., Mostafavi, H., Matkan, A. A., Valavi, R., Hughes, R. M., Shadloo, S., Aghighi, H., Abdoli, A., Teimori, A., Eagderi, S., & Coad, B. W. (2023). Predicting climate heating impacts on riverine fish species diversity in a biodiversity hotspot region. Scientific Reports, 13(1), 14347. https://doi.org/10.1038/s41598-023-41406-9 Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29(2), 134-153. https://doi.org/10.1017/S0376892902000097 Mansouri Daneshvar, M. R., Ebrahimi, M., & Nejadsoleymani, H. (2019). An overview of climate change in Iran: Facts and statistics. Environmental Systems Research, 8(1), 7. https://doi.org/10.1186/s40068-019-0135-3 Mostafavi, H., Mehrabian, A. R., Teimori, A., Shafizade-Moghadam, H., & Kambouzia, J. (2021). The Ecology and Modelling of the Freshwater Ecosystems in Iran. In L. A. Jawad (Ed.), Tigris and Euphrates Rivers: Their Environment from Headwaters to Mouth (pp. 1143–1200). Springer International Publishing. https://doi.org/10.1007/978-3-030-57570-0_52 Pavey, C. R., Addison, J., Brandle, R., Dickman, C. R., McDonald, P. J., Moseby, K. E., & Young, L. I. (2017). The role of refuges in the persistence of A ustralian dryland mammals. Biological Reviews, 92(2), 647–664. https://doi.org/10.1111/brv.12247 Petsch, D. K. (2016). Causes and consequences of biotic homogenization in freshwater ecosystems. International Review of Hydrobiology, 101(3–4), 113–122. https://doi.org/10.1002/iroh.201601850 Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The Natural Flow Regime. BioScience, 47(11), 769-784. https://doi.org/10.2307/1313099 R Development Core Team. (2021). R: a Language and Environment for Statistical Computing (Vienna) [Computer software]. Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T. J., Kidd, K. A., MacCormack, T. J., Olden, J. D., Ormerod, S. J., Smol, J. P., Taylor, W. W., Tockner, K., Vermaire, J. C., Dudgeon, D., & Cooke, S. J. (2019). Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 94(3), 849–873. https://doi.org/10.1111/brv.12480 Rolls, R. J., Leigh, C., & Sheldon, F. (2012). Mechanistic effects of low-flow hydrology on riverine ecosystems: Ecological principles and consequences of alteration. Freshwater Science, 31(4), 1163-1186. https://doi.org/10.1899/12-002.1 Saberi‐Pirooz, R., Rajabi‐Maham, H., Ahmadzadeh, F., Kiabi, B. H., Javidkar, M., & Carretero, M. A. (2021). Pleistocene climate fluctuations as the major driver of genetic diversity and distribution patterns of the Caspian green lizard, Lacerta strigata Eichwald, 1831. Ecology and Evolution, 11(11), 6927-6940. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The Human Footprint and the Last of the Wild. BioScience, 52(10), 891. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2 Sayyadzadeh, G., & Esmaeili, H. R. (2024). Freshwater lamprey and fishes of Iran: Reappraisal and updated checklist with a note on Eagderi et al. (2022). Zootaxa, 5402(1), 1-99. https://doi.org/10.11646/zootaxa.5402.1.1 Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD – a platform for ensemble forecasting of species distributions. Ecography, 32(3), 369-373. https://doi.org/10.1111/j.1600-0587.2008.05742.x Van Rees, C. B., Waylen, K. A., Schmidt‐Kloiber, A., Thackeray, S. J., Kalinkat, G., Martens, K., Domisch, S., Lillebø, A. I., Hermoso, V., Grossart, H., Schinegger, R., Decleer, K., Adriaens, T., Denys, L., Jarić, I., Janse, J. H., Monaghan, M. T., De Wever, A., Geijzendorffer, I., … Jähnig, S. C. (2021). Safeguarding freshwater life beyond 2020: Recommendations for the new global biodiversity framework from the European experience. Conservation Letters, 14(1), e12771. https://doi.org/10.1111/conl.12771 Wurtzebach, Z., & Schultz, C. (2016). Measuring ecological integrity: history, practical applications, and research opportunities. BioScience, 66(6), 446-457. https://doi.org/10.1093/biosci/biw037 Yousefi, M., Jouladeh-Roudbar, A., & Kafash, A. (2020). Using endemic freshwater fishes as proxies of their ecosystems to identify high priority rivers for conservation under climate change. Ecological Indicators, 112, 106137. https://doi.org/10.1016/j.ecolind.2020.106137 | ||
آمار تعداد مشاهده مقاله: 472 تعداد دریافت فایل اصل مقاله: 259 |