بررسی آزمایشگاهی اثر الیاف غیرفولادی بر کارآیی و مشخصات مکانیکی و طاقت بتن غلتکی روسازی | ||
پژوهش های زیرساخت های عمرانی | ||
مقاله 7، دوره 9، شماره 2 - شماره پیاپی 17، دی 1402، صفحه 17-33 اصل مقاله (5.65 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22091/cer.2023.8714.1435 | ||
نویسندگان | ||
حسین عرب یارمحمدی1؛ محمد کاظم شربتدار* 2؛ حسین نادرپور3 | ||
1گروه مهندسی عمران، دانشگاه آزاد اسلامی واحد ساری، ساری، ایران. | ||
2استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران | ||
3استاد، دانشکده مهندسی عمران، دانشگاه سمنان، سمنان، ایران. | ||
چکیده | ||
بتن غلتکی نوعی بتن خشک با اسلامپ صفر است، این نوع بتن دارای دو کاربرد اصلی است: روسازی و سدها. با اینحال، با توجه به مزایایی مانند کاهش هزینه، حرارت کم هیدراتاسیون، دوام و سرعت بالای اجرا، این بتن در ساخت فرودگاهها، سایتهای نظامی و نیروگاههای هستهای به کار گرفته شده است. از آنجا که مطالعات محدودی در خصوص اثر الیاف غیرفولادی بر مشخصات بتن غلتکی انجام شده است، هدف این تحقیق ارزیابی اثر الیاف غیرفلزی بر زمان ویبی، مقاومت فشاری، مقاومت کششی دونیمشدن، مقاومت خمشی و طاقت بتن غلتکی روسازی میباشد. بدین منظور از یک طرح مبنا با افزودن سه نوع الیاف شامل بارچیپ، امباس و شیشه با درصدهای 0.1، 0.3 و 0.5 استفاده گردید که درصدهای پائین برای کنترل ترک های سطحی آبرفتگی و درصدهای بالاتر برای بهبود خواص مکانیکی بودند. نتایج نشان داد که افزودن الیاف غیرفولادی باعث کاهش یا افزایش جزئی تا 5 درصد در مقاومت فشاری و کاهش جزئی در مدول الاستیسیته و مقاومت خمشی و افزایش تا 20 درصدی مقاومت کششی بتن غلتکی گردید. همچنین الیاف باعث کاهش کارآیی و افزایش زمان وی طرح مخلوط مبنا شد. دو الیاف بارچیپ و امباس در مقایسه با الیاف شیشه، رفتار نرمشدگی تغییرمکانی بیشتری بعد از ترکخوردگی از خود نشان دادند. میزان جذب انرژی نمونهها، با افزایش درصد حجمی الیاف، افزایش یافت که این افزایش برای الیاف بارچیپ از الیاف امباس بیشتر بود. بهترین رفتار پس از ترکخوردگی را الیاف بارچیپ با درصد وزنی 0.5 از خود نشان داد. | ||
کلیدواژهها | ||
"بتن غلتکی"؛ "مشخصات مکانیکی"؛ " الیاف غیرفولادی"؛ " روسازی"؛ "طاقت" | ||
عنوان مقاله [English] | ||
Experimental Investigating the Effect of Non-steel Fibers on the Consistency and Mechanical Properties and Toughness of RCCP | ||
نویسندگان [English] | ||
Hosein Arabyarmohammadi1؛ Mohammad Kazem Sharbatdar2؛ Hosein Naderpour3 | ||
1Department of Civil Engineering, Islamic Azad University, Sari Branch, Sari, Iran. | ||
2Faculty of Civil Engineering, Semnan University, Iran. | ||
3Faculty of Civil Engineering, Semnan University, Iran. | ||
چکیده [English] | ||
Roller-Compacted Concrete (RCC), which is a kind of dry consistency concrete with zero slump, has two various main applications, pavement and dams. But, owing to the benefits such as cost efficiency, low hydration heat, durability, and high speed of execution, RCC is particularly preferred in the construction of airstrips, military sites, and nuclear plants. In order to evaluate the effect of non-steel fibers on the Vebe time, modulus of elasticity, and also compressive strength, flexural strength, and splitting tensile strength of RCC as the aim of this research, a basic mix was used by adding three types of fibers including Barchip, Emboss and Glass fibers with percentages of 0.1, 0.3 and 0.5, the less percentage for controlling shrinkage cracks and higher amount for improving mechanical properties. The results showed that the addition of non-steel fibers to RCC reduced or increased compressive strength up to 5%, little decrease in Modulus of Elasticity and flexural strength and increasing up to 20% in tensile strength. Also, the fibers decreased the consistency and increased the vebe time of the basic mix. Barchip and Emboss fiber compared with Glass fibers showed better softening behavior after cracking. The amount of toughness was increased with the volume percentage of fiber, and this increase was higher for the Barchip fiber than the Emboss fiber. The best behavior after cracking was shown by Barchip fiber with a volume percentage of 0.5. | ||
کلیدواژهها [English] | ||
"Roller-Compacted Concrete", "Mechanical Properties", "Non-steel fibers", "Pavement", "Toughness" | ||
مراجع | ||
[1] Alsadey, S. (2015). Effect of superplasticizer on fresh and hardened properties of concrete. Journal of Agricultural Science and Engineering, 1(2), 70-74. [2] Long, W. J., Lemieux, G., Hwang, S. D., & Khayat, K. H. (2012). Statistical models to predict fresh and hardened properties of self-consolidating concrete. Materials and Structures, 45(7), 1035-1052. doi: 10.1617/s11527-011-9815-9 [3] Zhou, L., Zheng, Y., Yu, Y., Song, G., Huo, L., & Guo, Y. (2021). Experimental study of mechanical and fresh properties of HVFA-SCC with and without PP fibers. Construction and Building Materials, 267, 121010. doi: 10.1016/j.conbuildmat.2020.121010 [4] Arabyarmohammadi, H., Sharbatdar, M. K., & Naderpour, H. (2023). Experimental investigation of mix proportions effects on roller-compacted concrete properties using response surface methodology. International Journal of Pavement Research and Technology, 16, 1021-1046. doi: 10.1007/s42947-022-00177-8 [5] Rahmani, E., Sharbatdar, M. K., & Beygi, M. (2020). A comprehensive investigation into the effect of water to cement ratios and cement contents on the physical and mechanical properties of Roller Compacted Concrete Pavement (RCCP). Construction and Building Materials, 253, 119177. doi: 10.1016/j.conbuildmat.2020.119177 [6] Arabyarmohammadi, H., Sharbatdar, M., Naderpour, H. (2022). Mechanical properties evaluation of Roller Compacted Concrete Pavement using response surface methodology in terms of an experimental program. Journal of Transportation Infrastructure Engineering, 7(4), 75-98. doi: 10.22075/jtie.2021.23803.1540 [In Persian] [7] ACI 544.1 R-96. (1996). State-of-the-Art Report on Fiber Reinforced Concrete. Detroit: ACI Committee. [8] Yildizel, S., Timur, O., & Ozturk, A. (2018). Abrasion resistance and mechanical properties of waste-glass-fiber-reinforced roller-compacted concrete. Mechanics of Composite Materials, 54(2), 251-256. doi: 10.1007/s11029-018-9736-6 [9] Benouadah, A., Beddar, M., & Meddah, A. (2017). Physical and mechanical behaviour of a roller compacted concrete reinforced with polypropylene fiber. Journal of Fundamental and Applied Sciences, 9(2), 623-635. doi: 10.4314/jfas.v9i2.1 [10] Noroozi, R., Shafabakhsh, G., Kheyroddin, A., & Moghaddam, A. M. (2019). Investigating the effects of recycled PET particles, shredded recycled steel fibers and Metakaolin powder on the properties of RCCP. Construction and Building Materials, 224, 173-187. doi: 10.1016/j.conbuildmat.2019.07.012 [11] Rooholamini, H., Hassani, A., & Aliha, M. (2018). Evaluating the effect of macro-synthetic fibre on the mechanical properties of roller-compacted concrete pavement using response surface methodology. Construction and Building Materials, 159, 517-529. doi: 10.1016/j.conbuildmat.2017.11.002 [12] Ashteyat, A. M., Al Rjoub, Y. S., Murad, Y., & Asaad, S. (2022). Mechanical and durability behaviour of roller-compacted concrete containing white cement by pass dust and polypropylene fibre. European Journal of Environmental and Civil Engineering, 26(1), 166-183. doi: 10.1080/19648189.2019.1652694 [13] Ahmadi, M., Shafabakhsh, G. A., & Hassani, A. (2021). Fracture and mechanical performance of two-lift concrete pavements made of roller compacted concrete and polypropylene fibers. Construction and Building Materials, 268, 121144. doi: 10.1016/j.conbuildmat.2020.121144 [14] Rooholamini, H., Hassani, A., & Aliha, M. (2018). Fracture properties of hybrid fibre-reinforced roller-compacted concrete in mode I with consideration of possible kinked crack. Construction and Building Materials, 187, 248-256. doi: 10.1016/j.conbuildmat.2018.07.177 [15] Noroozi, M., Sharbatdar, M. K. (2022) Experimental investigation the mechanical and structural strengths of concretes combined rubber wastes and fibers. Sharif Journal of Civil Engineering, 38.2(1.1), 35-46. doi: 10.24200/j30.2021.57356.2904 [In Persian] [16] LaHucik, J., Dahal, S., Roesler, J., & Amirkhanian, A. N. (2017). Mechanical properties of roller-compacted concrete with macro-fibers. Construction and Building Materials, 135, 440-446. doi: 10.1016/j.conbuildmat.2016.12.212 [17] Sukontasukkul, P., Chaisakulkiet, U., Jamsawang, P., Horpibulsuk, S., Jaturapitakkul, C., & Chindaprasirt, P. (2019). Case investigation on application of steel fibers in roller compacted concrete pavement in Thailand. Case Studies in Construction Materials, 11, e00271. doi: 10.1016/j.cscm. 2019.e00271 [18] Neocleous, K., Angelakopoulos, H., Pilakoutas, K., & Guadagnini, M. (2011). Fibre-reinforced roller-compacted concrete transport pavements. In Proceedings of the institution of civil engineers-transport, 164(2), 97-109. doi: 10.1680/tran.9.00043 [19] Madhkhan, M., Azizkhani, R., & Harchegani, M. T. (2012). Effects of pozzolans together with steel and polypropylene fibers on mechanical properties of RCC pavements. Construction and Building Materials, 26(1), 102-112. doi: 10.1016/j.conbuildmat.2011.05.009 [20] Paryad, P., Naderpour, H., & Sharbatdar, M. K. (2022). Assessing the effects of volume fraction and diameter of hooked-end steel fiber on Vebe time and mechanical properties of RCCP. Civil Infrastructure Researches, 8(1), 131-144. doi: 10.22091/cer.2022.7777.1353 [In Persian] [21] ASTM, C. (2012). Standard specification for portland cement. ASTM International, West Conshohocken, PA. 2012. [22] ASTM C33/C33M. (2003). Standard specification for concrete aggregates. ASTM International [23] PCA. (2010). Guide for Roller-Compacted Concrete Pavements. Portland Cement Association. [24] ASTM 1176/C1176 M-08. (2008). Standard practice for making roller compacted concrete in cylinder molds using a vibrating table. ASTM International, West Conshohocken, PA. [25] ASTM C1170. (1998). Standard test method for determining consistency and density of roller compacted concrete using a vibrating table. West Conshohocken: ASTM Internacional. [26] ASTM C39/C39M–18. (2018). Standard test method for compressive strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA. [27] ASTM C469/C469M–14. (2014). Standard test method for static modulus of elasticity and Poisson's ratio of concrete in compression. ASTM International, West Conshohocken, PA. [28] ASTM C496/C496M–17. (2017). Standard test method for splitting tensile strength of cylindrical concrete specimens. ASTM International, West Conshohocken, PA4. [29] ASTM, C1609/C1609M-12. (2012). Standard test method for flexural performance of fiber-reinforced concrete. ASTM International, West Conshohocken, PA. [30] Hsie, M., Tu, C., & Song, P. S. (2008). Mechanical properties of polypropylene hybrid fiber-reinforced concrete. Materials Science and Engineering: A, 494(1-2), 153-157. doi: 10.1016/j.msea.2008.05.037 [31] De Oliveira, L. A. P., & Castro-Gomes, J. P. (2011). Physical and mechanical behavior of recycled PET fibre reinforced mortar. Construction and Building Materials, 25(4), 1712-1717. doi: 10.1016/j.conbuildmat.2010.11.044 [32] Fraternali, F., Ciancia, V., Chechile, R., Rizzano, G., Feo, L., & Incarnato, L. (2011). Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Composite structures, 93(9), 2368-2374. doi: 10.1016/j.compstruct.2011.03.025 [33] Kim, D., Naaman, A. E., Tawil, S. E. (2008). Comparative flexural behavior of four fiber reinforced cementitious composites. Cement & Concrete Composites, 30, 917-928. doi: 10.1016/j.cemconcomp.2008.08.002 | ||
آمار تعداد مشاهده مقاله: 290 تعداد دریافت فایل اصل مقاله: 239 |