تاثیر چیدمان اولیه ذرات در مدلسازی تولید موج با روش هیدرودینامیک ذرات هموار بر اساس مدل آزمایشگاهی | ||
پژوهش های زیرساخت های عمرانی | ||
مقاله 8، دوره 9، شماره 2 - شماره پیاپی 17، دی 1402، صفحه 35-50 اصل مقاله (5.88 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22091/cer.2023.9003.1451 | ||
نویسندگان | ||
مهیار پورلک1؛ احسان جباری* 2؛ حسن اکبری3 | ||
1دانشجوی دکتری، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران. | ||
2دانشیار، گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه قم، قم، ایران. | ||
3دانشیار، دانشکده مهندسی عمران و محیطزیست، دانشگاه تربیت مدرس، تهران، ایران. | ||
چکیده | ||
روش هیدرودینامیک ذرات هموار در زمره روش های عددی است که توجه بسیاری از محققان را در سالهای اخیر جلب نموده است. این روش، روشی لاگرانژی مبتنی بر حرکت ذرات و در زمره روش های بدون شبکه قلمداد می شود. در این روش شرایط قرارگیری اولیه ذرات می تواند نقش مهمی در کاهش خطاهای عددی و کارایی محاسبانی آن داشته باشد. در این پژوهش با مبنا قراردادن مدلسازی موج که از جمله متعارفترین پدیدهای هیدرولیکی و با بهرهگیری از تجارب مدلسازی های پیشین، شش توزیع بهینه و متداول ذرات شامل، توزیع مربعی SC، توزیع مثلثی Triangular، توزیع بر اساس الگوریتم WVT، توزیع براساس الگوریتم Greedy یا حریص، توزیع شش ضلعی Hexagonal و توزیع بر اساس الگوریتم فیبوناچی Fibonacci، مورد بررسی قرارگرفته است. بر اساس نتایج حاصل از بررسی فشار، سرعت و تراز سطح آزاد سیال مدل در محل گِیجهای مرجع مدل آزمایشگاهی، مشخص گردید که چیدمان های مربعی، مثلثی، WVT، Greedy، Hexagonal و Fibonacci به ترتیب دارای خطای مدلسازی معادل با 13.85%، %13.75، %12.63، %13.24، %9.07 و 9.37% بوده است و دو توزیع اولیه شش ضلعی و فیبوناچی دارای خطای مدلسازی کمتر از 10% میباشد و به عبارتی دارای بهترین عملکرد در بهکارگیری روش SPH در راستای بهبود کارایی مدل عددی بوده است. | ||
کلیدواژهها | ||
روشهای بدون شبکه؛ روش هیدرودینامیک ذرات هموار (SPH)؛ توزیع اولیه ذرات؛ مدلسازی موج؛ شرایط اولیه | ||
عنوان مقاله [English] | ||
The Effect of Initial Particles Distribution by in Smoothed Particle Hydrodynamic Method in Wave Generation Modeling Based on Laboratory Model | ||
نویسندگان [English] | ||
Mahyar Pourlak1؛ Ehsan Jabbari2؛ Hassan Akbari3 | ||
1Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran. | ||
2Department of Civil Engineering, Faculty of Engineering, University of Qom, Qom, Iran. | ||
3Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran. | ||
چکیده [English] | ||
The Smoothed Particle Hydrodynamics (SPH) method is among the numerical methods that have attracted the attention of many researchers in recent years. This method as a Lagrangian method based on the movement of particles is also one of the meshless methods. In this method, the initial location or distribution of particles can play an important role in reducing numerical errors and its computational efficiency. In this research, based on wave modeling, which is one of the most conventional hydraulic phenomena, and using previous modeling experiences, six optimal and common distributions of particles including square distribution (SC), Triangular distribution, distribution based on WVT algorithm, distribution based on Greedy algorithm, Hexagonal distribution and Fibonacci distribution based on Fibonacci al-gorithm have been investigated. Based on the results of the pressure, velocity and the free surface level of the fluid in the location of the reference gauges of the laboratory model, it was determined that the square, triangular, WVT, Greedy, Hexagonal and Fibonacci distributions have a modeling error equal to 13.85%, 13.75%, 12.63%, 13.24%, 9.07% and 9.37%, respectively, and the two primary hexagonal and Fibonacci distributions have a modeling error of less than 10%, and in other words, it has the best performance in using the SPH method in order to improve the efficiency of the computational model. | ||
کلیدواژهها [English] | ||
Meshless methods, Smoothed particle hydrodynamics, Initial particles distribution, Wave modelling, Initial conditions | ||
مراجع | ||
[1] Mehrabi, Z., Kamalian, R., Babaee, M., & Jabbari, E. (2020). Numerical Study of Local Scour Under the Jet Discharging From the Power Plants (Case Study: Neka Power Plant). Civil Infrastructure Researches, 6(1), 141-151. doi: 10.22091/cer.2021.6541.1225 [In Persian] [2] Moayyedi, M. K., & Bashardust, A. (2019). Numerical Simulation of Airflow and Particle Deposition from the Surface of Raw Materials Piles and Studying the Effects of Shape Variations and Free-Stream Velocity in Wind Erosion Reduction. Civil Infrastructure Researches, 5(1), 121-134. doi: 10.22091/cer.2019.4211.1143 [In Persian] [3] Farzin, S., Karami, H., Yahyavi, F., & Nayyer, S. (2018). Numerical study of hydraulic characteristics around the vertical and diagonal sharp crested weirs using Flow3D simulation.. Civil Infrastructure Researches, 4(1), 15-24. doi: 10.22091/cer.2017.1661.1068 [In Persian] [4] Jabbari, E., Karami, H., & molaiyfard, M. (2017). Numerical investigation of the influence of a hole at the pier of the bridge on the flow characteristics of the pier. Civil Infrastructure Researches, 3(1), 17-29. doi: 10.22091/cer.2017.1930.1073 [In Persian] [5] Fallah, A., Jabbari, E., & Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications, 77(3), 815-829. doi: 10.1016/j.camwa.2018.10.021 [6] Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics, 30(1), 543-574. doi: 10.1146/annurev.aa.30.090192.002551 [7] Monaghan, J. J. (2012). Smoothed particle hydrodynamics and its diverse applications. Annual Review of Fluid Mechanics, 44, 323-346. doi: 10.1146/annurev-fluid-120710-101220 [8] Liu, M. B., & Liu, G. (2010). Smoothed particle hydrodynamics (SPH): an overview and recent developments. Archives of computational methods in engineering, 17, 25-76. doi: 10.1007/s11831-010-9040-7 [9] Lee, E. S., Violeau, D., Issa, R., & Ploix, S. (2010). Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. Journal of Hydraulic research, 48(sup1), 50-60. doi: 10.1080/00221686.2010.9641245 [10] Fallah, A., Jabbari, E., & Babaee, R. (2019). Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization. Computers & Mathematics with Applications, 77(3), 815-829. doi: 10.1016/j.camwa.2018.10.021 [11] MohammadAlian, S., Babaee, R., & Jabbari, E. (2023). A New Adaptive Algorithm for the Optimal Distribution of Computational Centers in the Meshless Multiquadric Method. Civil Infrastructure Researches, 9(1), 161-173. doi: 10.22091/cer.2023.8470.1419 [In Persian] [12] Morris, J. P., Fox, P. J., & Zhu, Y. (1997). Modeling low Reynolds number incompressible flows using SPH. Journal of computational physics, 136(1), 214-226. doi: 10.1006/jcph.1997.5776 [13] Diehl, S., Rockefeller, G., Fryer, C. L., Riethmiller, D., & Statler, T. S. (2015). Generating optimal initial conditions for smoothed particle hydrodynamics simulations. Publications of the Astronomical Society of Australia, 32, e048. doi: 10.1017/pasa.2015.50 [14] Belytschko, T., Krongauz, Y., Dolbow, J., & Gerlach, C. (1998). On the completeness of meshfree particle methods. International Journal for Numerical Methods in Engineering, 43(5), 785-819. doi: 10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9 [15] Khayyer, A., Gotoh, H., & Shao, S. D. (2008). Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55(3), 236-250. doi: 10.1016/j.coastaleng.2007.10.001 [16] Antuono, M., Colagrossi, A., & Marrone, S. (2012). Numerical diffusive terms in weakly-compressible SPH schemes. Computer Physics Communications, 183(12), 2570-2580. doi: 10.1016/j.cpc.2012.07.006 [17] Gui, Q., Dong, P., & Shao, S. (2015). Numerical study of PPE source term errors in the incompressible SPH models. International Journal for Numerical Methods in Fluids, 77(6), 358-379. doi: 10.1002/fld.3985 [18] Gotoh, H., Khayyer, A., Ikari, H., Arikawa, T., & Shimosako, K. (2014). On enhancement of Incompressible SPH method for simulation of violent sloshing flows. Applied Ocean Research, 46, 104-115. doi: 10.1016/j.apor.2014.02.005 [19] Oger, G., Marrone, S., Le Touzé, D., & De Leffe, M. (2016). SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. Journal of Computational Physics, 313, 76-98. doi: 10.1016/j.jcp.2016.02.039 [20] Sun, P. N., Colagrossi, A., Marrone, S., & Zhang, A. M. (2016). Detection of Lagrangian coherent structures in the SPH framework. Computer Methods in Applied Mechanics and Engineering, 305, 849-868. doi: 10.1016/j.cma.2016.03.027 [21] Monaghan, J. J. (1989). On the problem of penetration in particle methods. Journal of Computational physics, 82(1), 1-15. [22] Monaghan, J. J. (2000). SPH without a tensile instability. Journal of computational physics, 159(2), 290-311. doi: 10.1006/jcph.2000.6439 [23] Akbari, H. (2019). An improved particle shifting technique for incompressible smoothed particle hydrodynamics methods. International Journal for Numerical Methods in Fluids, 90(12), 603-631. doi: 10.1002/fld.4737 [24] Pourlak, M., Akbari, H., & Jabbari, E. (2023). Importance of Initial Particle Distribution in Modeling Dam Break Analysis with SPH. KSCE Journal of Civil Engineering, 27(1), 218-232. doi: 10.1007/s12205-022-0304-1 [25] Leiserson, C. E., Rivest, R. L., Cormen, T. H., & Stein, C. (2009). Introduction to Algorithms, Third Edition, Cambridge, MA, USA: MIT press. [26] Mahmoudi, A., Hakimzadeh, H., Ketabdari, M. J., Etemadshahidi, A., Cartwright, N., & Abyn, H. (2016). Weakly-compressible SPH and Experimental modeling of periodic wave breaking on a plane slope. International Journal of Maritime Technology, 5, 63-76. doi: 20.1001.1.23456000.2016.5.0.3.5
| ||
آمار تعداد مشاهده مقاله: 262 تعداد دریافت فایل اصل مقاله: 196 |