بررسی اثر ستون متکی در برآورد پاسخهای دیوارهای پایه-گهوارهای مرکزگرا تحت رکوردهای حوزه دور و نزدیک گسل | ||
پژوهش های زیرساخت های عمرانی | ||
دوره 8، شماره 2 - شماره پیاپی 15، اسفند 1401، صفحه 145-156 اصل مقاله (2.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22091/cer.2022.7994.1373 | ||
نویسندگان | ||
اسماعیل محمدی دهچشمه؛ وحید بروجردیان* | ||
دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران. | ||
چکیده | ||
در این تحقیق به بررسی اثر ستون پی-دلتا (ستون متکی) در پاسخ قابهای ثقلی دارای سیستم باربر جانبی دیوار پایه-گهوارهای پرداخته است. سازههای مورد بررسی دارای تعداد طبقات 4، 8، 12، 16 و 20 طبقه هستند. رفتار دینامیکی غیرخطی تحت 22 رکورد لرزهای دور و 28 رکورد لرزهای نزدیک گسل که نیمی از آنها دارای پالس هستند، در نرمافزار OpenSees انجام شده است. رکوردهای موردنظر در دو سطح DBE و MCE مقیاس شده و به سازه اعمال میشوند. مدلسازی بهصورت دوبعدی انجامگرفته است. در این تحقیق نشان دادهشده است که 1) اثر مودهای بالاتر با افزایش شدت زلزله افزایش مییابد، 2) اثرات مودهای بالاتر به صورت افزایش خمش و برش در دیوار در رکوردهای دور و نزدیک گسل بدون پالس بیشتر قابل مشاهده است، 3) جابجاییهای پسماند در دو سطح زلزله مورد بررسی ناچیز و قابل صرف نظر است، 4) ستون پی-دلتا بیشتر در سازهها تحت رکوردهای نزدیک گسل دارای پالس موثر بوده است، 5) حداکثر اثر ستون پی-دلتا در افزایش لنگر خمشی دیوار تحت زلزله نزدیک گسل دارای پالس است که مقدار آن 12 درصد است و 6) به صورت کلی اثر ستون پی دلتا در سازههای دیوار پایه-گهوارهای به صورت ویژه دیوارهای گام بردارم قابل صرف نظر است. | ||
کلیدواژهها | ||
سیستم مرکزگرا؛ دیوار گهوارهای؛ تغییر شکل پسماند؛ اثر ستون پی-دلتا؛ اثر مودهای بالاتر | ||
عنوان مقاله [English] | ||
Investigation of the Leaning Column Effect on Estimating of the Responses of Self-Centering Base-Rocking Walls under Far and Near Field Ground Motions | ||
نویسندگان [English] | ||
Esmaeil Mohammadi Dehcheshmeh؛ Vahid Broujerdian | ||
Iran University of Science and Technology, Tehran, Iran. | ||
چکیده [English] | ||
In this research, the effect of P-Delta column (leaning column) on the response of gravitational frames with lateral-load resistance system of base-rocking wall has been investigated. The studied structures have 4-, 8-, 12-, 16-, and 20-stories. Nonlinear dynamic behavior is performed under 22 far-field seismic records and 28 near-field seismic records, half of which are pulse-like, via OpenSees software. The ground motions are scaled at both DBE and MCE levels and applied to the structure. The modeling is done in two dimensions. As a results, it has been shown that 1) the higher modes effect increases with increasing earthquake intensity, 2) the higher modes effect are more visible in the records of far-field and near-field-non pulse-like, 3) residual displacements in The both earthquake levels studied are insignificant and negligible, 4) P-Delta column has been more effective in structures under near-field-pulse-like records, 5) The maximum effect of P-Delta column in increasing the moment of wall under near-field-pulse-like earthquake that the value is 12%, and 6) In general, the effect of the P-Delta column on the base-rocking wall structures in especially the stepping-wall can be ignored. | ||
کلیدواژهها [English] | ||
Self-centering system, Rocking wall, Residual displacement, Leaning column effect, Higher mode effect | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] E. Mohammadi Dehcheshmeh and V. Broujerdian, “Seismic Design Coefficients of Self-Centering Multiple Rocking Walls Subjected to Effect of Far and Near-Field Earthquakes,” Civ. Infrastruct. Res., vol. 7, no. Issue 1 (In progress), 2021, doi: 10.22091/cer.2021.7025.1257. [2] G. W. Housner, “The behavior of inverted pendulum structures during earthquakes,” Bull. Seismol. Soc. Am., vol. 53, no. 2, pp. 403–417, 1963. [3] M. Aslam, W. G. Godden, and D. T. Scalise, “Earthquake rocking response of rigid bodies,” J. Struct. Div., vol. 106, no. 2, pp. 377–392, 1980. [4] M. J. N. Priestley, “Overview of PRESSS research program,” PCI J., vol. 36, no. 4, pp. 50–57, 1991. [5] Y. Kurama, D. Ph, S. Pessiki, and D. Ph, “Seismic Behavior and Design of Unbonded Post-Tensioned Precast Concrete Walls,” PCI J., no. May-June, p. 18, 1999. [6] R. S. Henry, S. Aaleti, S. Sritharan, and J. M. Ingham, “Concept and Finite-Element Modeling of New Steel Shear Connectors for Self-Centering Wall Systems,” J. Eng. Mech., vol. 136, no. 2, pp. 220–229, Feb. 2010, doi: 10.1061/(ASCE)EM.1943-7889.0000071. [7] A. Wada, Z. Qu, H. Ito, S. Motoyui, H. Sakata, and K. Kasai, “Seismic retrofit using rocking walls and steel dampers,” in Improving the seismic performance of existing buildings and other structures, 2010, pp. 1010–1021. [8] R. S. Henry, N. J. Brooke, S. Sritharan, and J. M. Ingham, “Defining concrete compressive strain in unbonded post-tensioned walls,” ACI Struct. J., vol. 109, no. 1, pp. 101–112, 2012. [9] T. Holden, J. Restrepo, and J. B. Mander, “Seismic Performance of Precast Reinforced and Prestressed Concrete Walls,” J. Struct. Eng., vol. 129, no. 3, pp. 286–296, 2003, doi: 10.1061/(ASCE)0733-9445(2003)129:3(286). [10] J. I. Restrepo, J. Mander, and T. J. Holden, “New generation of structural systems for earthquake resistance,” in NZSEE 2001 Conference, 2001. [11] F. J. Perez, S. Pessiki, and R. Sause, “Seismic Design of Unbonded Concrete Walls with Vertical Joint Connectors,” PCI J., vol. 49, no. 1, pp. 58–79, 2004, doi: 10.15554/pcij.01012004.58.79. [12] R. S. Henry, S. Sritharan, and J. M. Ingham, “Finite element analysis of the PreWEC self-centering concrete wall system,” Eng. Struct., vol. 115, pp. 28–41, 2016, doi: 10.1016/j.engstruct.2016.02.029. [13] R. S. Henry, S. Sritharan, and J. M. Ingham, “Residual drift analyses of realistic self-centering concrete wall systems,” Earthq. Struct., vol. 10, no. 2, pp. 409–428, 2016, doi: 10.12989/eas.2016.10.2.409. [14] A. Gu, Y. Zhou, Y. Xiao, Q. Li, and G. Qu, “Experimental study and parameter analysis on the seismic performance of self-centering hybrid reinforced concrete shear walls,” Soil Dyn. Earthq. Eng., vol. 116, pp. 409–420, 2019. [15] X. Hu, Q. Lu, and Y. Yang, “Rocking Response Analysis of Self-Centering Walls under Ground Excitations,” Math. Probl. Eng., 2018. [16] H. A. D. S. Buddika and A. C. Wijeyewickrema, “Seismic Performance Evaluation of Posttensioned Hybrid Precast Wall-Frame Buildings and Comparison with Shear Wall-Frame Buildings,” J. Struct. Eng., vol. 142, no. 6, 2016, doi: 10.1061/(ASCE)ST.1943-541X.0001466. [17] X. Lu, B. Yang, and B. Zhao, “Shake-table testing of a self-centering precast reinforced concrete frame with shear walls,” Earthq. Eng. Eng. Vib., vol. 17, no. 2, pp. 221–233, 2018, doi: 10.1007/s11803-018-0436-y. [18] T. Sun, Y. C. Kurama, P. Zhang, and J. Ou, “Linear-elastic lateral load analysis and seismic design of pin-supported wall-frame structures with yielding dampers,” Earthq. Eng. Struct. Dyn., vol. 47, no. 4, pp. 988–1013, 2018, doi: 10.1002/eqe.3002. [19] G. Guo, L. Qin, D. Yang, and Y. Liu, “Dimensional response analysis of rocking wall-frame building structures with control devices subjected to near-fault pulse-like ground motions,” Eng. Struct., vol. 220, p. 110842, 2020. [20] Q. Liu, C. W. French, and S. Sritharan, “Performance of a Precast Wall with End Columns Rocking-Wall System with Precast Surrounding Structure,” Struct. J., vol. 117, no. 3, p. 103, 2020. [21] J. J. Ajrab, G. Pekcan, and J. B. Mander, “Rocking wall–frame structures with supplemental tendon systems,” J. Struct. Eng., vol. 130, no. 6, pp. 895–903, 2004. [22] V. Broujerdian and E. Mohammadi Dehcheshmeh, “Development of fragility curves for self-centering base-rocking walls subjected to far and near field ground motions,” Sharif J. Civ. Eng., 2021, doi: 10.24200/j30.2021.57279.2897. [23] E. Mohammadi Dehcheshmeh and V. Broujerdian, “Probabilistic Evaluation of Self-Centering Birocking Walls Subjected to Far-Field and Near-Field Ground Motions,” J. Struct. Eng., vol. 148, no. 9, p. 4022134, 2022. [24] V. Broujerdian and E. Mohammadi Dehcheshmeh, “Investigation of the Behavior of Self-Centering Base- and Double- Rocking Walls Subjected to Far-Field and Near-Field Earthquakes,” Ferdowsi Civ. Eng., 2021, doi: 10.22067/jfcei.2021.68094.1008. [25] E. Mohammadi Dehcheshmeh and V. Broujerdian, “Determination of optimal behavior of self-centering multiple-rocking walls subjected to far-field and near-field ground motions,” J. Build. Eng., p. 103509, 2022, doi: https://doi.org/10.1016/j.jobe.2021.103509. [26] V. Broujerdian and E. Mohammadi Dehcheshmeh, “Locating the rocking section in self-centering bi-rocking walls to achieve the best seismic performance,” Bull. Earthq. Eng., 2022, doi: 10.1007/s10518-022-01325-y. [27] E. Mohammadi Dehcheshmeh and V. Broujerdian, “The effects of rotational components of near-fault earthquakes on self-centering base-rocking walls,” Bull. Earthq. Sci. Eng., 2021. [28] Mazzoni S, McKenna F, Scott MH, Fenves GL, “Open System for earthquake engineering simulation (OpenSEES) user command-language manua,” Pacific Earthq. Eng. Res. Center, Berkeley, CA, USA, 2009. [29] L. Wiebe and C. Christopoulos, “Mitigation of higher mode effects in base-rocking systems by using multiple rocking sections,” J. Earthq. Eng., vol. 13, no. 1 SUPPL. 1, pp. 83–108, 2009, doi: 10.1080/13632460902813315. [30] M. Khanmohammadi and S. Heydari, “Seismic behavior improvement of reinforced concrete shear wall buildings using multiple rocking systems,” Eng. Struct., vol. 100, pp. 577–589, 2015, doi: 10.1016/j.engstruct.2015.06.043. [31] T. Li, J. W. Berman, and R. Wiebe, “Parametric study of seismic performance of structures with multiple rocking joints,” Eng. Struct., vol. 146, pp. 75–92, 2017. [32] D. Pennucci, G. M. Calvi, and T. J. Sullivan, “Displacement‐based design of precast walls with additional dampers,” J. Earthq. Eng., vol. 13, no. S1, pp. 40–65, 2009. [33] J. I. Restrepo and A. Rahman, “Seismic Performance of Self-Centering Structural Walls Incorporating Energy Dissipators,” J. Struct. Eng., vol. 133, no. 11, pp. 1560–1570, 2007, doi: 10.1061/(ASCE)0733-9445(2007)133:11(1560). [34] K. Orakcal and J. W. Wallace, “Flexural modeling of reinforced concrete walls-experimental verification,” ACI Mater. J., vol. 103, no. 2, p. 196, 2006. [35] FEMA, FEMA P695 :Quantification of building seismic performance factors. US Department of Homeland Security, FEMA, 2009. [36] M. Archila, “Directionality effects of pulse-like near field ground motions on seismic response of tall buildings.” University of British Columbia, 2014. [37] ASCE/SEI 7, “Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10).,” 2010. [38] F. C. Blebo and D. A. Roke, “Seismic-resistant self-centering rocking core system with buckling restrained columns,” Eng. Struct., vol. 173, pp. 372–382, 2018.
| ||
آمار تعداد مشاهده مقاله: 1,115 تعداد دریافت فایل اصل مقاله: 555 |