-تخصیص بهینه سفارش کار در مسئله توزیع و بالانس آنلاین بار در خط تولید | ||
| مدیریت مهندسی و رایانش نرم | ||
| مقاله 7، دوره 8، شماره 1 - شماره پیاپی 14، فروردین 1401، صفحه 106-122 اصل مقاله (995.72 K) | ||
| نوع مقاله: مقاله پژوهشی | ||
| شناسه دیجیتال (DOI): 10.22091/jemsc.2019.1308 | ||
| نویسندگان | ||
| نیما رحمانی1؛ امیر نجفی* 2 | ||
| 1گروه مدیریت صنعتی، واحد قزوین، دانشگاه آزاد اسلامی، قزوین، ایران | ||
| 2دانشیار، گروه مهندسی صنایع، واحد زنجان، دانشگاه آزاد اسلامی، زنجان، ایران | ||
| چکیده | ||
| برنامهریزی مناسب خطوط تولید از دغدغههای مدیران تولید در سطح تاکتیکی است. به کار نبستن روشی مطمئن در خصوص متعادلسازی خط تولید میتواند سبب بروز عارضه و مشکلات متعدد برای سیستم تولید شود. استفاده از روشهای معمول بالانس خط تولید نمیتواند توزیع بار سفارشات را متوازن سازد. الگوریتمهای بالانس آنلاین بار میتواند این عارضه را کاهش دهد، الگوریتم رابینهود بهبودیافته به عنوان روشی کارا جهت توزیع آنلاین بار میباشد. این مقاله، در پی ارزیابی و انتخاب روش تخصیص سفارش کارها به الگوریتم رابینهود بهبودیافته است. روشهای تخصیص مورد مطالعه سه روش جانسون، پالمر و روش فراابتکاری تبریدی میباشد که با استفاده از دادههای خط تولید و چاپ لفافهای پلیمری در شرکت پلات در ایران مورد بررسی قرار گرفته است. نتیجه حاصل از ارزیابی مقاله نشان میدهد که الگوریتم جانسون نسبت به دو روش دیگر در کنار الگوریتم رابینهود بهبودیافته مناسبترین خروجی را در کمینهسازی بار بر روی سیستم دارد. | ||
| کلیدواژهها | ||
| بالانس آنلاین بار؛ الگوریتم رابین هود بهبود یافته؛ روش جانسون؛ روش پالمر | ||
| عنوان مقاله [English] | ||
| ptimal Allocation of Orders in the Online Load Distribution and Load Balancing of Assembly Lines | ||
| نویسندگان [English] | ||
| Nima Rahmani1؛ Amir Najafi2 | ||
| 1Department of Industrial Management, Qazvin Branch, Islamic Azad University, Qazvin, Iran | ||
| 2Associate Professor, Department of Industrial Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran | ||
| چکیده [English] | ||
| Proper assembly line planning is one of the challenges production managers face at the tactical level. Failing to apply a secure way of assembly line balancing can cause various complications and problems for the production system. Using the conventional methods for balancing the assembly line cannot balance the load distribution of orders. Online load balancing algorithms can reduce these complications. Old Bachelor Acceptance - Robin Hood (OBA-RH) approach is an effective way for online load distribution. This study aims to evaluate and select a method of order allocation based on the OBA-RH algorithm. Johnson, Palmer, and the meta-heuristic algorithm of annealing are the three allocation approaches studied in this paper, using the data obtained from the production line of polymer films, Plate Company, Iran. The results of the study indicate that Johnson's algorithm and the OBA-RH algorithm offer the best outcome in minimizing system loads. | ||
| کلیدواژهها [English] | ||
| OBA-RH algorithm, online load balancing, Palmer method, Johnson method | ||
| مراجع | ||
|
Alavidoost, M.T., Tarimoradi, M., Fazel, M.H. (2015). Fuzzy Adaptive Genetic Algorithm for Multi-Objective Assembly Line Balancing Problems, Applied Soft Computing Journal, 34: 655–677. DOI:10.1016/j.asoc.2015.06.001 ARCUS, L.A. (1966). COMSOAL: A computer method of sequencing operations for assembly lines, International Journal of Production Research, 4: 25-32. DOI:10.1108/IJCST-01-2016-0002 Asadi Gongej, I., Nahavandi, N. (2015). Development of the Lagrangian Liberation Method for Solving the Scheduling Problem in a Flexible Workshop Environment. Journal of Industrial Engineering Researches and Manufacturing Systems. 6:121-131. (in persian) DOI:10.1007/978-3-319-04705-8_17 Avikal, S., Jain, R., Mishra, P.K., Yadav, H.C. (2013). A heuristic approach for U-shaped assembly line balancing to improve labor productivity, Computers & Industrial Engineering, 64: 895-901. DOI:10.1016/j.cie.2013.01.001 Babinski, S., Dockum, R., Craft, J., Fergus, A., Goldenberg, D., & Bowern, C. (2019). A Robin Hood approach to forced alignment: English-trained algorithms and their use on Australian languages. Proceedings of the Linguistic Society of America, 4 (1), 3:1-12. Doi: 10.3765/plsa.v4i1.4468 Bard, J.F. (1989). Assembly line balancing with parallel workstations and dead time, International Journal of Production Research, 27:1005–1018. DOI:10.1080/00207548908942604 Baybars, L. (1986). A survey of exact algorithms for the simple assembly line balancing problem.Manag Sci, 32: 909–932. Doi: 10.3934/naco.2023003 Baykasoǧlu, A. (2006). Multi-rule multi-objective simulated annealing algorithm for straight and U type assembly line balancing problems, Journal of Intelligent Manufacturing, 17: 217-232. DOI:10.1007/s10845-005-6638-y Becker, C., Scholl, A. (2006). A survey on problems and methods in generalized assembly line balancing, European Journal of Operational Research, 168: 694-715. DOI:10.1016/j.ejor.2004.07.023 Beheshti Nia, M.A., Akbari, J. (2105). Timing of the three-stage supply chain with a focus on the integrity of its stages. Journal of Industrial Engineering Research and Manufacturing Systems.6: 191-205. (in Persian) DOI:10.2507/IJSIMM11(4)3.212 Behnamian, J. (2015). Multipurpose scheduling of multi-factory production networks using sub-genotype algorithm and reactionary method. Journal of Industrial Engineering Researches and Manufacturing Systems. 6: 133-147. (in Persian) DOI:10.1080/00207543.2020.1797207 Boysen, N., Fliedner, M., Scholl, A. (2008). Assembly line balancing: which model to use when? International Journal of Production Economics, 111: 509–528. DOI:10.1016/j.ijpe.2007.02.026 Boysen, N., Fliedner, M., Scholl, A.A. (2007). Classification of assembly line balancing problems, European Journal of Operational Research, 183: 674– 693. DOI:10.1016/j.ejor.2006.10.010 Caramia, M., Dell’Olmo, P., Italiano, G.F. (2001). New Algorithms for Examination Timetabling, Lecture Notes in Computer Science, 32: 230–242. DOI:10.1007/s10479-010-0782-2 Caramia, M., Dell’Olmo, P., Onori, R., 2004, Minimum Makespan Task Sequencing with Multiple Shared Resources, Robotics and Computer Integrated Manufacturing, 20: 234-251. DOI:10.1016/j.rcim.2003.10.003 Caramia.M, Dell’Olmo.P.2006.Effective Resource Management in Manufacturing Systems Optimization Algorithms for Production Planning, Springer series in advanced manufacturing, 38: 332-342. DOI:10.1007/1-84628-227-6 Dar-E, lE. (1973). MALB—a heuristic technique for balancing large single-model assembly lines, AIIE Transactions, 5: 343-356. Doi: 10.22094/joie.2020.560265.1542 Dar-E, lE.M. Rubinovitch, Y. (1979). Must—A Multiple Solutions Technique for Balancing Single Model Assembly Lines, Management Science, 25: 1105-1114. doi:10.1016/0272-6963(85)90025-7 Deng, J., Wang, L., Shen, J., Zheng, X. (2015).An Improved Harmony Search Algorithm for the Distributed Two Machine Flow-Shop Scheduling Problem, Springer Berlin Heidelberg Publish. DOI:10.1007/978-3-662-47926-1_11 Falkenauer, E., Delchambre, A. (1992). A genetic algorithm for bin packing and line balancing, Proceedings, IEEE International Conference on Robotics and Automation, 2: 1186-1192. DOI: 10.1109/ROBOT.1992.220088 Florios, K. (2018). A hyperplanes intersection simulated annealing algorithm for maximum score estimation. Econometrics and Statistics. 8: 37-55. doi:10.1016/j.ecosta.2017.03.005 Gutjahr, A.L., Nemhauser, G.L. (1964). An algorithm for the line balancing problem, Management Science, 11: 308-315. Doi: 10.1287/mnsc.11.2.308 Harsanyi, J.C. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility, Journal of Political Economy, 63:309–321. doi: 10.1086/257678 Hwang, R.K., Katayama, H., Gen, M. (2008). U-shaped assembly line balancing problem with genetic algorithm, International Journal of Production Research, 46: 4637-4649. DOI:10.1080/00207540701247906 Kucukkoc, I., Zhang, D, (2014). Mathematical model and agent based solution approach for the simultaneous balancing and sequencing of mixed-model parallel two-sided assembly lines, Int. J. Production Economics, 158: 314–333. DOI: 10.1016/j.ijpe.2014.08.010 Lapierre, S.D., Ruiz, A., Soriano, P. (2006). Balancing assembly lines with tabu search, European Journal of Operational Research, 168: 826-837. DOI:10.1016/j.ejor.2004.07.031 Levi, D.S., Kaminsky, P., Levi, E.S. (2003). Designing and managing the supply chain: Concepts, strategies, and case studies, McGraw-Hill. DOI:10.1002/j.2158-1592.2001.tb00165.x Marco, C., Eugenio G., Lisa R., Secchi, A. (2018). A “reverse Robin Hood”? The distributional implications of non-standard monetary policy for Italian households. Journal of International Money and Finance. 85: 215-235. DOI:10.2760/331492 Paksoy, T., Özceylan, E., Gökçen, H. (2012). Supply chain optimisation with assembly line balancing, International Journal of Production Research, 50: 3115-3136. DOI:10.1080/00207543.2011.593052 Palmer, D.S. (1965). Sequencing Jobs through a Multi-Stage Process in the Minimum Total Time- a Quick Method of Obtaining an ear Optimum, Operational Research Quarterly, 16: 101-107. DOI:10.1080/00207543.2011.593052 Peterson, C. (1993). A tabu search procedure for the simple assembly line balancing problem, in the proceedings of the decision science institute conference, 1502-1504. DOI: 10.1515/mper-2015-0008 Sabuncuoglu, I., Erel, E., Alp, A. (2009). Ant colony optimization for the single model U-type assembly line balancing problem, International Journal of Production Economics, 120: 287-300. DOI:10.1016/j.ijpe.2008.11.017 Salveson, M.E. (1955). The assembly line balancing problem' Journal of Industrial Engineering, 6: 18-25. DOI: 10.4236/ajibm.2016.65063 Scholl, A., Klein, R., Domschke, W. (1998). Pattern based vocabulary building for effectively sequencing mixed model assembly lines. Journal of Heuristics, 4: 359–381. Doi: 10.1023/A:1009613925523 Suman, B., Kumar, P. (2006). A survey of simulated annealing as a tool for single and multiobjective optimization, Journal of the Operational Research Society, 57: 1143-1160. DOI:10.1057/palgrave.jors.2602068 Yano, C.A., Bolat, A. (1989). Survey, development, and application of algorithms for sequencing paced assembly. DOI: 10.4236/jsip.2014.53009 Zhang, W., Maleki, A, Marc AR, Liu, J. (2018). Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy.163: 191-207. DOI:10.1016/j.energy.2018.08.112 | ||
|
آمار تعداد مشاهده مقاله: 787 تعداد دریافت فایل اصل مقاله: 564 |
||
